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Abstract
A new formalism has been developed for the
study of turbulence using the scale relativity
framework [1]. In this work, we extend the pre-
vious studies. Precisely, we discuss the appli-
cation of the scale-relativity approach applied
to a turbulent fluid in rotation. It explores
the transformation of the time derivative of the
Navier-Stokes equation in the usual x-space into
a Schrödinger-like equation in velocity space.
This transformation involves introducing an ex-
ternal vectorial field to account for rotation and
a local Velocity Harmonic Oscillator (VHO) po-
tential in velocity space. The coefficients of the
VHO potential are determined by second-order
x-derivatives of the pressure. Then we derive
formulae for the Probability Distribution Func-
tions (PDF) of velocity and acceleration. Thus,
predictions are then compared with data from
’oceanic drifters’ velocity measurements. We
show a good agreement between the predicted
acceleration PDF and the observed data from
oceanic drifters [2].

Basic Concepts
The theory of scale relativity and fractal space-
time is based on relaxing the assumption of
space smoothness and differentiability, it means
a fractal space. This theory has been recently
applied to the problem of turbulence in fluid
mechanics. The key idea for this application
consists of working in velocity-space instead of
position-space, i.e., of using the velocity as ba-
sic coordinate. This suggestion was motivated
by the Kolmogorov (K41). However, one impor-
tant field of application of turbulence theory is
geophysics for which the presence of a Coriolis
need to be taken into account.

Models
For geophysical turbulence, we define a ”geopo-
tential” Φ̃v(v) in v-space (as we consider the ex-
istence of cascade of eddies described as a sum
of oscillators. then, Schrödinger-Coriolis (SC)
equation written in v-space:(
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Since the emergence of a SC equation relies
on the scaling of the inertial range itself which
serves as microscopic theory to construct it,
it strictly applies only to the largest integral
scales of this range. At this maximal scale,
the geostrophic potential is reduced to an os-
cillator which we assume to be harmonic with
frequency ω. Then,the Hamiltonian reads: H=
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z , wherepvk = i vk∇vk ,

accounting for a possible anisotropy in the dif-
fusion coefficient.
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Solutions to Schrödinger-Coriolis-Coriolis equation in v-space
We derive various solutions of the Schrödinger equation including a Coriolis force expressed in terms
of the vectorial field Kv.
We have shown that, in Lagrangian turbulence experiments, one can locally describe the oscillatory
motion of a particle swept away in an eddy as an harmonic oscillator (HO, possibly damped: DHO).
This can be accounted for by introducing an HO potential in the motion equation.
We assume that the same approach can be used in the geostrophic case. An exact solution can
be found using the eigenvalue for the z component of the angular momentum operator Lz, which
intervenes here in the combination 2 Ω (vxpvy − vypvx). Therefore we take polar coordinates in 2D
v-space (v, φ) and vz in the z direction, and we obtain for the stationary equation Hψ = Eψ.

Test with geophysical data

We simulate the probability density function (PDF) of velocity for a harmonic oscillator (left figure
below), particularly focusing on the n = 3 level for examining the effects of the Coriolis force on this
system. Acceleration PDF obtained from a numerical simulation of a quantum harmonic oscillator
(107 points). The blue thick curve is the PDF obtained in the presence of a Coriolis force. The red
dashed curve is the PDF obtained in the absence of a Coriolis force with the same normalization,
which is very well fitted in the acceleration range shown (±30σa). The green dashed curve is the
same no-Coriolis PDF, but now fitted on the large tails of the Coriolis PDF. The brown thin line is
a Gaussian curve with the same standard deviation σa.

Then we apply SR to loopers (i.e., drifters with looping trajectories that complete at least two
orbits). They have been identified in Lagrangian trajectory data by an automatic algorithm. This

algorithm has been applied to the Global Drifter Program data set, and over 15,000 looping
trajectory segments have been identified worldwide. The global drifter acceleration PDF is well

fitted by an 1/a4 up to ≈ 40σ, as can be seen in the right curve. We prove excellent agreement with
the theoretical expectation from the scale-relativity description of turbulent flows. Studies about

the PDF of accelerations of loopers in function of latitude have been made. (owing to the fact that
the Coriolis force varies with latitude, vanishing at the equator and being maximal at the poles).

All the PDFs show a common exponent Pa(a) ∼ a4 up to large values of the acceleration, in
agreement with the laboratory data and with the theoretically expected value for lz = 0.


