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Echo-state-networks (ESN) [1,2] are known for their remarkable property of producing prescribed

autonomous dynamics by learning a simple feedback to a large recurrent network. They have served as

conceptual models for how the brain produces movement [2] and continue to inspire the design of various

artificial dynamical devices [3]. However, the principles that underly their seemingly miraculous success

remain incompletely understood. Here, we develop a weakly nonlinear theory of ESN that explains this

success in the regime where the recurrent network evolution is stable and the feedback is weak.

We analyze the prototypical network of N recurrent units (see Figure. 1) described by

dxi

dt
= �xi + g

X

j

Mijr(xj) + bi

X

j

wjr(xj) (1)

where M is a gaussian random matrix , b is a random “feedback” vector and r(x) is a nonlinear “activa-

tion” function, taken as usual to be tanh(x) for simplicity. The aim of the learning procedure is to choose

the vector of output synaptic weights w such that z(t) =
P

j wjr[xj(t)]) reproduces, as best as possible,

a desired function f(t).
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Figure 1. Left: Network schematic (adapted from [2]); (Center) Function f to be learnt (green) and network
approximation z (red); (Right) Spectrum of the linear dynamics (N=100).

When the amplitude of f(t) is small, the ESN operates in a weakly nonlinear regime. We show that

the learning of the output weights w amounts to i) positioning the eigenvalues of the linear dynamics

at locations close to those of the Fourier frequencies of f(t) and ii) constraining the weakly nonlinear

dynamics to converge to the correct amplitudes for these Fourier modes. We further provide analytical

predictions for when the nonlinear dynamical attractors are stable corresponding to successful learning

that is strongly N -dependent. We expect our theory to be applicable to various generalizations of Eq. (1),

for instance based on other dynamical units [3], or for more structured networks with di↵erent unit classes.
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« Reservoir » of randomly connected
units (neurons,electronic circuits,
 mechanical networks, ….)

« Magic » : one can learn the 
feedback w so that the autonomous
dynamics produce any desired 
function : 
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Figure 1. Left: Network schematic (adapted from [2]); (Center) Function f to be learnt (green) and network
approximation z (red); (Right) Spectrum of the linear dynamics (N=100).
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Weakly nonlinear theory of Echo State Networks
- How does this work?  not well-understood in general.

- Our contribution : a detailed explanation  in the regime
when the starting network is stable and the feedback z(t) is 
of small amplitude.

- Three steps :

i) Linear level learning : use the rank 1 feedback  to place 
a finite number of modes close of the imaginary axis => 
approximate Fourier decomposition of the function.

ii) Weakly linear level : the interaction of these  slow modes 
can be described  by amplitude equations.

iii) Weakly linear level learning:  amounts to refining the feedback w 
and give eigenvalues (small) real parts which, with the nonlinear 
terms, select appropriate modes/Fourier amplitudes (and phases).

4

It is found that successful learning happens much less often that for a single sine, namely for a much smaller relative
subset of matrices L.

As a last example for small N , we consider learning a function with a fundamental frequency and a single harmonic,
like the one shown in Fig. (1), namely f(t) = f1 exp(!t) + f2 exp(i!t) + c.c]. This requires to produce the pair of
eigenvalues i! and i2! and their complex conjugates, for the linear network dynamics. This can be done for a N = 4
network by a suitable choice of w(0), such that at the linear level z(t) = [Z1 exp(i!t) + Z2 exp(i2!t) + c.c] . The
weakly nonlinear dynamics of the complex amplitudes Z1 and Z2, then read, taking due account of time translation
and inversion symmetry,

dZ1

dt
= �1Z1 + (g11|Z1|2 + g21|Z2|2)Z1 (17)

dZ2

dt
= �2Z2 + (g12|Z1|2 + g22|Z2|2)Z2 (18)

with coe�cients given by

g11 = �
vT

1 G
⇥
|u1|2u1

⇤

|wT u1|2 , g21 = �2
vT

1 G
⇥
|u2|2u1

⇤

|wT u2|2 , g12 = �2
vT

2 G
⇥
|u1|2u2

⇤

|wT u1|2 , g22 = �
vT

2 G
⇥
|u2|2u2

⇤

|wT u2|2 (19)

where the us and vs are the right and left eigenvectors of L associated to the eigenvalues i! or i2!, as indicated
by their subscript. In order to obtain the desired amplitudes and frequencies of the two modes, �1 and �2 should be
set as

�R
1 = �gR

11|f1|2 � gR
21|f2|2, �R

2 = �gR
12|f1|2 � gR

22|f2|2 (20)

A simple analysis shows that the created limit cycle of the autonomous dynamics is stable when the two following
conditions are obeyed

gR
11r

2
1,L + gR

22r
2
2,L < 0, gR

11g
R
22 � gR

12g
R
21 > 0 (21)

ZZ Describe Fig. 3 when one has decided what we would like to show. ZZ
Having gained a precise understanding of what learning amounts to for small networks, we proceed and consider

large networks. The extension of the previous analysis to larger N could at first appear straightforward. As discussed
above, the requirement that the linear dynamics have N1 complex conjugate pairs of eigenvalues, with possibly also
a zero mode entirely determines the vector w for a network of size N = 2N1, or N = 2N1 + 1, in presence of
the zero mode. While this is formally true, the di�culty is that the norm of the vector w steeply increases with
N and quickly reaches very large values as noted in previous works on linear ESN [8, 16]. This can be explicitly
seen by solving the N equations determining w (7). This is conveniently done in the basis of eigenvectors of M
(Eq. (1)), associated with it eigenvalues µis . When b is expressed as the linear combination of the right eigenvectors
of M,{ri, i = 1 · · · , N}, as b =

P
j �jrj , the vector wT is obtained as the linear combination of the corresponding

left eigenvectors,wT =
P

j ↵jlj , with [10],

↵i =
1

�igN�1

Q
j(�j + 1 � gµi)Q

j 6=i(µj � µi)
ZZTOBECHECKEDZZ (22)

Thus the coe�cients ↵i grow very quickly with N (e.g. as ⇠ NN+1(!/2g)N ). This makes the feedback and the
whole dynamics very sensitive to any perturbation. The regularizing term with weight ⇢ on the norm w in the cost
function S(w) (Eq. (2)), already introduced in the initial work on ESN [1], prevents this unwieldy growth. Due to
the magnitude of ||w|| at ⇢ = 0, even a very small constant ↵ as a large e↵ect on w and on the spectrum of L. As
shown in Fig. 1, the e↵ect of a small regularization (for N = 100, ⇢ = 10�8), is to only allow the displacement close
to the imaginary axis of a few eigenvalues close to the fundamental frequency and its lower harmonics It is seen in
Eq. (22) that indeed the growth of the ↵i’s is prevented when only a few eigenvalues �j are displaced from their initial
position in the absence of feedback, �j = 1+ gµj . Perturbative computation in ⇢ of the spectrum [10] also shows that
the eigenvalues corresponding to the higher Fourier modes are the more strongly displaced away from the imaginary
axis .

Therefore for large N and a small regularizing weight ⇢, the spectrum of L, the linearized dynamics near x = 0
has only a few slow modes close to the imaginary axis while all the others have a significant negative real part (of the
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