

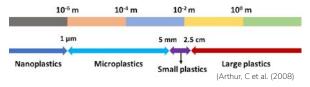
The nonhomogeneous vertical distribution of small neutrally buoyant particles in a convective ocean-mixed-layer model

Luz Andrea SILVA TORRES.¹, Stefano BERTI¹, Enrico Calzavarini¹

1 Univ. Lille, ULR 7512, Unité de Mécanique de Lille Joseph Boussinesq (UML), F-59000 Lille, France

We aim to study the transport and vertical concentration profiles of neutrally buoyant microplastics through direct numerical simulations of small particles in an inhomogeneous turbulent flow.

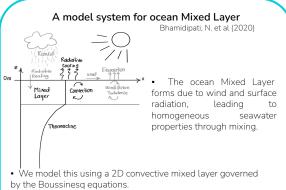
SCIENTIFIC CONTEXT


Microplastic transport is complex, involving biological, physical, and

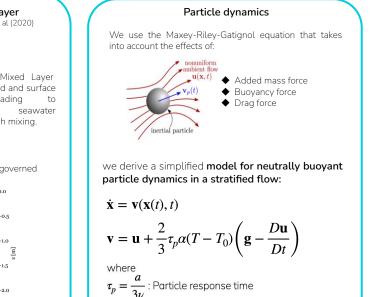
It is one of the biggest threats to

♦ Plastic pollution

involving biological, physical, and chemical processes across multiple scales.


♦ What are microplastics?

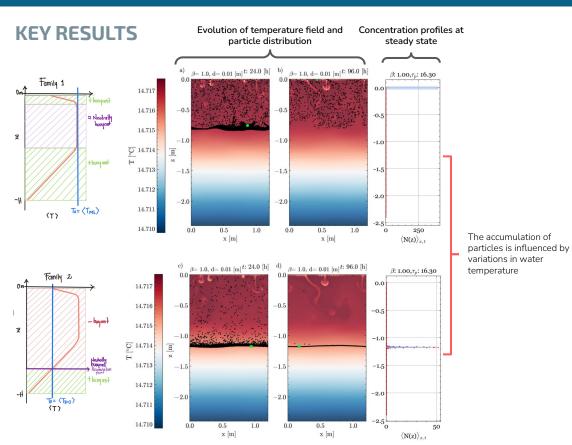
Neutrally buoyant particles


 They are particles whose density is equal to that of the surrounding fluid.

• Some of the most common plastics in the ocean have a density ratio (ρ_P / ρ_F) close to 1.

14.717 14.716 14.715 S 14.714 14.713 -1.5 14.712 240.0 h 2: 1.15e-06 m²/s -2.0 14.711 14.710 0.5 1.0 14.710 14.715 x [m] $\langle T \rangle_{r} [^{\circ}C]$

APPROACH AND MODEL

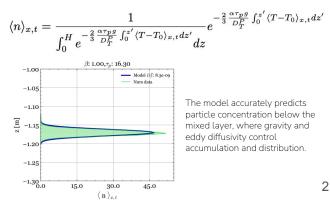

lpha : Thermal expansion coefficient for sea water

Université de Lille

The nonhomogeneous vertical distribution of small neutrally buoyant particles in a convective ocean-mixed-layer model Luz Andrea SILVA TORRES.¹, Stefano BERTI¹, Enrico Calzavarini¹

1 Univ. Lille, ULR 7512, Unité de Mécanique de Lille Joseph Boussinesq (UML), F-59000 Lille, France

We derive a theoretical relation to predict the concentration profiles


We start with the conservation of particle mass

$$\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{v}) = 0$$

For each quantity, we average over the \boldsymbol{x} direction and decompose our quantities into mean and fluctuating components

$$\frac{\partial}{\partial t}\langle n\rangle_x - \frac{2}{3}\tau_p \alpha g \frac{\partial}{\partial z} \langle n\rangle_x \langle T - T_0 \rangle_x - \frac{\partial}{\partial z} \left(\underbrace{D_T^P}_T(z) \frac{\partial}{\partial z} \langle n\rangle_x \right) = 0$$

Finally we get:

