

Modeling, Analysis and Finite Element Simulations of Kinematically Incompatible Föppl-von Kármán Plates

Edoardo Fabbrini (fabbrini.edoardo.840@s.kyushu-u.ac.jp)

BACKGROUND & MOTIVATION

Incompatible kinematics: the crystal lattice contains disclinations, which are rotational defects.

Föppl-von Kármán plates: nonlinear plate model that couples the in-plane (membrane) and out-of-plane (transverse) deformations.

<u>Motivation</u>: **Tunning** the **mechanical** and **electrical** properties of graphene membranes by **tailoring** the **distribution** of **disclinations**.

THE MECHANICAL MODEL

 $\Omega \subset \mathbb{R}^2$ mid-plane of the plate, *h* plate thickness $w : \Omega \to \mathbb{R}$ (out-of-plane displacement) $v : \Omega \to \mathbb{R}$ (Airy stress potential)

 $\nabla^2 v \coloneqq h \operatorname{cof}(\sigma)$

 $\sigma: \Omega \to \mathbb{R}^{2 \times 2}_{sym}$ (Cauchy stress tensor)

 $\Delta^2 f \coloneqq \partial_{1111} f + 2\partial_{1122} f + \partial_{2222} f \text{ (bilaplacian)}$

 $\begin{cases} D\Delta^2 w = [w, v] + p & \text{in } \Omega \\ \frac{2}{Eh}\Delta^2 v = -[w, w] + 2\vartheta & \text{in } \Omega \\ w = \partial_n w = 0 & \text{on } \partial\Omega \\ v = \partial_n v = 0 & \text{on } \partial\Omega \end{cases}$ (1)

 $[f,g] \coloneqq \partial_{11}f \partial_{22}g + \partial_{22}f \partial_{11}g - \partial_{12}f \partial_{12}g$ (Monge-Ampère operator)

 $p: \Omega \to \mathbb{R}$ (transverse load)

 $\vartheta(x) \coloneqq \sum_{k=1}^{N} s_k \delta(x - y^{(k)})$ (distribution of **disclinations**)

THE ANALYTICAL RESULTS

Theorem 1 (Existence) [1]

Let Ω be open, bounded, simply connected set with **Lipschitz boundary**, $p \in H^{-2}(\Omega)$. Then (1) admits a solution in $H_0^2(\Omega) \times H_0^2(\Omega)$

Theorem 2 (Regularity) [1]

Let Ω be open, bounded, simply connected set with $C^{4,\gamma}$ boundary $(\gamma \in (0,1))$, $p \in L^{k}(\Omega)$. If $(v, w) \in H_{0}^{2}(\Omega) \times H_{0}^{2}(\Omega)$ solves (1), then $w \in W^{4,k}(\Omega)$

 $v \in W^{2,m}(\Omega) \cap C^{4,\gamma}(\overline{\Omega} \setminus \bigcup_{k=1}^{N} \overline{B_r(y^{(k)})})$ for r > 0 small enough and $m \in [1, \infty)$.

THE NUMERICAL RESULTS

X The problem: conforming FEM for 4^{th} order PDEs requires C^1 FE, not easy to implement.

A solution: use C^0 FE, enforce the C^1 -regularity by **penalizing** the **discontinuity** of the **gradient** of the shape functions across the facets of the mesh.

