Generation of water waves by the impulsive motion of a vertical plate

Wladimir Sarlin^{1,2}, Zhaodong Niu^{1,2}, Alban Sauret³, Philippe Gondret¹ & Cyprien Morize¹

¹Université Paris-Saclay, CNRS, Laboratoire FAST, 91405, Orsay, France

²Laboratoire d'Hydrodynamique (LadHyX), UMR 7646 CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France

³Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA wladimir.sarlin@ladhyx.polytechnique.fr, cyprien.morize@universite-paris-saclay.fr

Recently, the generation of impulse surface waves by the collapse of a rectangular granular column into water was investigated experimentally [1,2,3]. These laboratory experiments aiming at modeling the generation of tsunami waves by subaerial landslides [4] have shown different regimes of waves depending on the Froude number Fr_g based on the velocity of the advancing granular front relative to the linear gravity wave velocity in shallow water [5] : linear Cauchy-Poisson waves at low enough Fr_q , solitary waves at moderate Fr_a , and transient bores leading to breaking waves at large enough Fr_a . For the two last regimes where the grains push the shallow water like a piston, the amplitude of the generated wave can be predicted from the initial characteristic of the granular column [6]. In these gravity-driven flows, the run-out distance of the granular collapse is linked to its time scale and thus to the typical velocity of the granular front [7]. Here, we investigate the more general case of surface gravity waves generated by the impulsive motion of a vertical plate in a rectangular channel partially filled with water. The water surface dynamics is tracked from the images taken by a camera from the side of the channel. By independently varying the stroke L and the velocity V of the piston, as well as the water depth h_0 , we observe a large variety of waves including the three wave regimes described before but also other regimes such as a jet splash regime where a tongue of fluid is ejected at high piston acceleration. The different wave regimes are shown to depend on both the relative Stroke L/h_0 and the Froude number $Fr_p = V/(gh_0)^{1/2}$ of the motion of the piston, which have been varied in a large range. Interestingly, all kind of waves exhibit a common transient bore shape during the first stage of formation, suggesting the short-time hydrodynamics belongs to an unsteady shock structure problem.

Références

- 1. B. Huang, Q. Zhang, J. Wang, C. Luo, X. Chen, and L. Chen, Experimental study on impulse waves generated by gravitational collapse of rectangular granular piles, *Phys. Fluids* **32**, 033301 (2020).
- M. A. Cabrera, G. Pinzon, W. A. Take, and R. P. Mulligan, Wave generation across a continuum of landslide conditions from the collapse of partially submerged to fully submerged granular columns, *J. Geophys. Res. Oceans* 125, e2020JC016465 (2020).
- 3. M. Robbe-Saule, C. Morize, R. Henaff, Y. Bertho, A. Sauret, and P. Gondret, Experimental investigation of tsunami waves generated by granular collapse into water, *J. Fluid Mech.* **907**, A11 (2021)
- M. Robbe-Saule, C. Morize, Y. Bertho, A. Sauret, A. Hildenbrand, and P. Gondret, From laboratory experiments to geophysical tsunamis generated by subaerial landslides, *Sci. Rep.* 11, 18437 (2021)
- W. Sarlin, C. Morize, A. Sauret, and P. Gondret, Nonlinear regimes of tsunami waves generated by a granular collapse, J. Fluid Mech. 919, R6 (2021).
- 6. W. Sarlin, C. Morize, A. Sauret, and P. Gondret, From granular collapses to shallow water waves : A predictive model for tsunami generation, *Phys. Rev. Fluids* **7**, 094801 (2022)
- 7. W. Sarlin, C. Morize, A. Sauret, and P. Gondret, Collapse dynamics of dry granular columns : From free-fall to quasistatic flow, *Phys. Rev. E* **104**, 064904 (2021)