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When propagating over variable seabed, ocean surface waves experience transformations due to var-
ious physical processes, including shoaling, refraction, diffraction, reflection or depth-induced breaking.
Dispersive and non-linear effects can also be of importance, depending on the relative water depth kh
(k being the characteristic wavenumber and h the local water depth) and the wave steepness ka (with
a the characteristic wave amplitude) respectively. Among the deterministic (or phase-resolving) class of
wave models, depth-averaged models are commonly used as a cheaper alternative to the fully dispersive
fully non-linear Euler equations. However, due to the simplifying assumptions made in their derivation
regarding dispersion and/or non-linearity, their ranges of applicability in terms of kh and ka vary signif-
icantly and remain limited.

In this work, we compare various deterministic wave models, ranging from the non-dispersive non-
linear shallow water equations to a fully non-linear potential-flow model [1]. Several depth-averaged
weakly dispersive Boussinesq-type models (from Peregrine [2], Nwogu [3] and Wei et al. [4]), or Serre-
Green-Naghdi equations (e.g. Cienfuegos et al. [5] and Clamond et al. [6]) are also considered.

The capabilities and limitations of the various models regarding dispersion and non-linearity are
assessed on cases of propagation of non-breaking waves in one horizontal dimension with uniform or
variable water depth. Extreme wave run-up on a vertical wall due to a dispersive shock-wave wave train
is also investigated based on the test-case introduced by Benoit et al. [7]. This case allows a quantitative
assessment of the performances of the various approximate models and highlight the importance of both
dispersion and non-linearity.
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