Rheology, tribology, and acoustic lubrication of dense non–Brownian suspensions

Adrien Izzet¹, Xiaoping Jia², Arnaud Tourin², Guillaume Ovarlez³, Annie Colin¹

¹ ESPCI Chimie Biologie Innovation, Matériaux Innovants pour l'Energie, 10 rue Vauquelin, 75005 Paris

 $^2\,$ Institut Langevin - Öndes et Images (UMR
7587) - ESPCI, 1 Rue Jussieu 75238 Paris Cedex $05\,$

 $^{3}\,$ Laboratory of the Future, CNRS - Univ. Bordeaux

adrien.izzet@espci.fr

Suspensions are dispersions of solid particles in a fluid. Their rheology [1] implies a linear dependence of the shear stress σ on the shear rate, as a function of the microscopic friction μ_p between the particles. The coupling between the flow, the normal forces, and μ_p , induces a strong dependence of the rheology on σ . While the theoretical framework is well-established, measurements of the microscopic properties are missing.

In this presentation, I will show how one can use Tuning-Fork Microscopy (TFM) to measure μ_p between solid polystyrene (PS) particles immersed in a solvent, and how our results compare with the numerical simulations found in the literature [2,3], and moreover, provide novel insights on the origin of the rheological behaviors of suspensions [4]. This study focuses on three typical solvents : I will show that both PEG and water lead to constant values for μ_p (resp. 0 and 0.13), while Silicon (Si) oil leads to a decrease of μ_p with increasing load σ . The TFM results are consistent with the rheology : for Si oil, μ_p depends on the contact elasticity and thus on the applied load; PS-water exhibits a constant viscosity up to a critical shear stress from which a shear-thickening behavior is observed. Because the applied stress is less than the critical value at which electrostatic repulsive forces are overcome in the inter-particle contacts, the observed transition in the rheology is not due to a change in the nature of particle contacts (from frictionless to frictional) but instead finds its origin in a change of regime from viscous to inertial, as suggested by Fall et al. [5]. PS-PEG has a Newtonian behavior but exhibits shear-thinning when the volume fraction ϕ gets close to Random Loose Packing : the swelling of the beads induces a repulsive force preventing particle contact, except at high ϕ .

Following these experiments, I will also present recent results from a new experiment in which ultrasounds activate a PS-Si oil suspension. While in this suspension μ_p can decrease with increasing shear stress, I will show that it is also possible to tune it down by propagating ultrasounds into the suspension : in the presence of ultrasound, at constant stress, the microscopic friction coefficient is replaced by a lower effective microscopic coefficient. This leads to a decrease in the viscosity of the system at fixed imposed stress and solid fraction.

Références

- 1. F. BOYER, E. GUAZZELLI, O. POULIQUEN, *Physical Review Letters*, 107, 1–5, (2011).
- L. LOBRY, E. LEMAIRE, F. BLANC, S. GALLIER, F. PETERS, Journal of Fluid Mechanics, 860, 682-710, (2019).
- 3. W. CHÈVREMONT, B. CHAREYRE, H. BODIGUEL, Physical Review Fluids, 4, 1-17, (2019).
- A-V. NGUYEN LE, A. IZZET, G. OVARLEZ A. COLIN, Journal of Colloid and Interface Science, 629, 438-450, (2023).
- 5. A. FALL, A. LEMAITRE, F. BERTRAND, D. BONN, G. OVARLEZ, *Physical Review Letters*, **105**, 268303, (2010).