Title : Solving the turbulent jet puzzle in the scale-relativity framework

Thierry Lehner and Laurent Nottale PSL, Observatoire de Paris-Meudon Laboratoire Luth, Cnrs UMR 8102, 5 Place Jules Janssen, 92190 Meudon Cedex.

Abstract :

We apply the scale-relativity theory of turbulence to the turbulent round jet problem. In this theory, the time derivative of the Navier-Stokes equations can be integrated under the form of a macroscopic Schrödinger equation acting in v-space, in which the potential is that of harmonic oscillators. This equation is solved in terms of a wave function whose square yields the velocity PDF, from which the Reynolds stresses can be derived, thus solving the closure problem in this case. This allows us to obtain a theoretical prediction for the turbulent intensity radial profiles which agrees with the experimental data, and for the various purely numerical invariants characterizing the turbulent jet, such as its opening angle \approx 1/5, the ratio of turbulent intensities over the centerline axial velocity \approx 1/4 and the velocity correlation coefficient \approx 0.4 (which is common to all free shear flows).