Using sparse odor cues to infer the location of their source. N. Rigolli^{1,2}N. Magnoli², L. Rosasco³, A. Seminara¹

Bio-inspired motivation

Different animals localize odor sources with high precision even when cues are intermittent.

• how can they make successfully predictions in such a turbulent environment?

credit Sivitilli. Wertman. Gire (UM

Direct Numerical Simulation (Nek 5000)

odor transport in water motion, solving:

$$\partial_t u + u \cdot \nabla u = -\frac{1}{\rho} \nabla P + \nu \nabla^2 u + f$$
$$\nabla \cdot u = 0$$
$$\partial_t \theta + u \nabla \theta = D \nabla^2 \theta$$

Incompressible Navier-Stokes equations

Passive scalar equation

SIDE VIEW

Themi-cylinder obstacle generates fluctuations

TOP VIEW

Odor snapshot visualization

A supervised learning problem

We used the simulated odor fields to find a function f that takes odor as input x to predict the distance from the source (output y).

0.5 m

Supervised learning algorithm rationale:

- Compose many examples of input/output (x_i,y_i) from simulations (=training set)
- Learn function $f: x \rightarrow y$ from training set \bullet
- Apply *f* to new input point to predict its output -> measure prediction error in new datapoints

1. Université Côte d'Azur, CNRS 2. DIFI, University of Genoa, INFN