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Superfluidity of liquid helium Bidimensionalisation under intense counterflow Abrupt transition towards split cascade scenario
« Helium-4 displays superfluidity below Ty ~ 2.17K At strong counterflow veloc.|ty HnS:. | Transition happens abruptly at critical counterflow velocity U;..
c At1< T < T two-fluid phenomenolo — system becomes quasi-two-dimensional —
== A P | gy S — reminiscent of rotating turbulence, MHD, thin-layer flows, ... 10-! SO\ f2/3 "
— coupling between normal (viscous) and superfluid (inviscid) components >~ ZSQ
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Figure 1. Left: Phase diagram of 4He. Right: Relative densities of both components.

Figure 5. Kinetic energy spectrum for different counterflow velocities. Inset: relative large-scale

Counterflow phenomenon dissipation using 2D (squares) and 3D (triangles) forcing schemes.

* Produced by a temperature gradient in superfluid helium Here, simulations are performed with a large-scale dissipation term and with

= Normal and superfluid components flow with mean relative velocity U, hyperviscous small-scale dissipation.

.\ - h . l Figure 3. Statistically-steady 3D superfluid turbulence under strong counterflow at T = 1.9 K. . . | |
ery emcient heat transport by normat component A 2D forcing scheme is used to obtain a cleaner quasi-2D state at large U,,..

The critical counterflow velocity U}, can be expressed in terms of the forcing

Emergence of a split energy cascade and the mutual friction parameters.
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— = Starting from initial state with zero fluctuations (v, = v. = 0): =10 -
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Figure 2. Counterflow in channel of superfluid helium. — =5 % Vo8 —-o— ky=15, Q=5
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V-v,=V-7,=0 Figure 6. Relative large-scale dissipation Q,, for different forcing and mutual friction parameters.
U, U. mean velocity of each component (= U, = U, — U,) .
v, s fluctuating velocity of each component — Perspectives
v.(T)  effective superfluid viscosity — microscopic dissipation 102
@, ¢s external forcing ~ Normal(0, o5) at wave numbers |k| ~ ks = Motivate experimental study of (quasi-)2D turbulence in superfluid helium.
B o = The physical origin of this transition is not currently understood.
Frs = aps(dy(vy — vs) mutual friction force Figure 4. Temporal evolution of kinetic energy spectrum. Times are normalised by the forcing S .
S10 = Characterisation of temperature effects and hysteresis.

(g ~ \/<|ws|2> mutual friction frequency time scale ¢t = (kfo) . Inset: normalised energy flux. Simulation performed using o . . o
a(T) temperature-dependent mutual friction parameter N> = 1024 collocation points. = Application to other two-fluid systems (e.g. partially-ionised MHD).




