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Superfluidity of liquid helium

Helium-4 displays superfluidity below 𝑇𝜆 ≈ 2.17 K
At 1 ≲ 𝑇 < 𝑇𝜆: two-fluid phenomenology
→ coupling between normal (viscous) and superfluid (inviscid) components
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Figure 1. Left: Phase diagram of 4He. Right: Relative densities of both components.

Counterflow phenomenon

Produced by a temperature gradient in superfluid helium
Normal and superfluid components flow with mean relative velocity 𝑼ns
Very efficient heat transport by normal component
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Figure 2. Counterflow in channel of superfluid helium.

Hall–Vinen–Bekarevich–Khalatnikov model

Two-fluid model at macroscopic scales:
𝜕𝒗n
𝜕𝑡 + (𝑼n + 𝒗n) ⋅ 𝛁𝒗n = −

𝛁𝑝n
𝜌n

+ 𝜈n∇2𝒗n −
𝑭ns
𝜌n

+ 𝝋n

𝜕𝒗s
𝜕𝑡 + (𝑼s + 𝒗s) ⋅ 𝛁𝒗s = −

𝛁𝑝s
𝜌s

+ 𝜈s∇2𝒗s +
𝑭ns
𝜌s

+ 𝝋s

𝛁 ⋅ 𝒗n = 𝛁 ⋅ 𝒗s = 0

𝑼n, 𝑼s mean velocity of each component (⇒ 𝑼ns = 𝑼n − 𝑼s)
𝒗n, 𝒗s fluctuating velocity of each component
𝜈s(𝑇) effective superfluid viscosity → microscopic dissipation
𝝋n, 𝝋s external forcing ∼ Normal(0, 𝜎f) at wave numbers |𝒌| ≈ 𝑘f
𝑭ns = 𝛼𝜌s𝛺0(𝒗n − 𝒗s) mutual friction force
𝛺0 ∼ √⟨|𝝎s|2⟩ mutual friction frequency
𝛼(𝑇) temperature-dependent mutual friction parameter

Bidimensionalisation under intense counterflow

At strong counterflow velocity 𝑼ns:
→ system becomes quasi-two-dimensional
→ reminiscent of rotating turbulence, MHD, thin-layer flows, …
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Figure 3. Statistically-steady 3D superfluid turbulence under strong counterflow at 𝑇 = 1.9 K.

Emergence of a split energy cascade

Starting from initial state with zero fluctuations (𝒗n = 𝒗s = 𝟎):
→ inverse energy cascade for 𝑘 < 𝑘f, with 𝐸(𝑘) ∼ 𝑘−5/3

→ direct energy cascade for 𝑘 > 𝑘f, with 𝐸(𝑘) ∼ 𝑘−3

→ scalings compatible with phenomenology of classical 2D turbulence
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Figure 4. Temporal evolution of kinetic energy spectrum. Times are normalised by the forcing
time scale 𝑡f = (𝑘f𝜎f)

−1/2. Inset: normalised energy flux. Simulation performed using
𝑁3 = 10243 collocation points.

Abrupt transition towards split cascade scenario

Transition happens abruptly at critical counterflow velocity 𝑈∗
ns.
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Figure 5. Kinetic energy spectrum for different counterflow velocities. Inset: relative large-scale
dissipation using 2D (squares) and 3D (triangles) forcing schemes.

Here, simulations are performed with a large-scale dissipation term and with
hyperviscous small-scale dissipation.

A 2D forcing scheme is used to obtain a cleaner quasi-2D state at large 𝑈ns.

The critical counterflow velocity 𝑈∗
ns can be expressed in terms of the forcing

and the mutual friction parameters.
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Figure 6. Relative large-scale dissipation 𝑄𝜇 for different forcing and mutual friction parameters.

Perspectives

Motivate experimental study of (quasi-)2D turbulence in superfluid helium.
The physical origin of this transition is not currently understood.
Characterisation of temperature effects and hysteresis.
Application to other two-fluid systems (e.g. partially-ionised MHD).


