ABSTRACT

Adhesion controlled by the roughness of the surfaces in con-
tact, or by third bodies at the interface, is a recurring prob-
lem in contact physics, with applications ranging from geo-
physics to nanosciences. Inspired by experimental observa-
tions [1] of a detachment transition when one increases the
density of nanoparticles intercalated between a graphene
sheet and a flat substrate, we propose a simple statistical
model which displays a similar transition. Experimental
observations suggest that the observed transition results
from collective effects that expand the detachment zones in
the regions where its boundary is concave. Thus, we build
a model based on the convexification of percolation clus-
ters associated to individual detachment areas induced by
each particle. Numerical simulations reveal that this model
exhibit a discontinuous transition, i.e., the transition oc-
curs via a macroscopic avalanche triggered by a microscopic
change (here, adding a single particle to the system). Our
model therefore shares similarities with explosive percola-
tion and bootstrap percolation models. We also propose
a quantitative interpretation of the unbinding transition
of graphene with intercalated nanoparticles based on this

INSPIRATION: EXPERIMENTS

M. Yamameoto, OPL, J Huang, WG Cullen, TL Einstein, MS Fuhrer, Phys Rev X 2012

:;: v Area (Exp.)
* Length (Exp.) [

(wu) 7 ‘ypbus| onsueoeIRYD

e Unbinding transition observed when increasing
the thickness of graphene
e Detachment zones exhibit collective effects

Applications:

* Engineering: Contact mechanics, tribology
* Geology: fragments in faults, fracking
 Graphene: Strain Engineering

Other applications of our model:

e Third-bodies problem
e Imbibition in 2D domains with pre-wetted

zones
e Linear Separability in 2D classification
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MODELS

Without collective effects: disc percolation

Figure 3: Illustration of the
model of percolation of discs. In
red, the percolating cluster

Iterative convexification
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Avalanche of convexifications lead to transition ?

Implementation:

* Discs added one by one (Also some simulations
with varying disc radius)
* Free edges or periodic boundary conditions

e Systems containing up to 10° discs

Bootstrap Percolation
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[s our convexification model a continuous,
isotropic generalization of bootstrap percola-
tion 7
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RESULTS: MACROSCOPIC AVALANCHES
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e Asymptotic transition at finite C' or zero C' 7
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Agom = 104 10° runs

Probability function
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e Mechanism of transition: an avalanche of con-
vexifications when a critical disc is added

e Discontinuity over one realization

e Distributed transition

— Adom =107

— Adom =103

N\
\\}\‘\

N
Ve \L
A\
‘ \
| \
H \
| \
| \
\
L
\]

== [y Varies; Agem = 21 X 102; Ng = Agom/i= 200
\\ fitted experimental data

COMPARISON WITH EXPERIMENTS

Figure 2: Crosses : fitted ex-
perimental data, compared with
simulation results

Comparison with our sys-
tem size gives a characteris-
ticlenght ! ~ 1 um
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N: number of discs in cluster
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e Power laws tails at finite C

e Exponents c

e Exponents c

2] Raissa M. D’Souza and Jan Nagler. Anomalous critical and supercritical phenomena in explosive percolation. Nature Physics, 11(7):531-538, 2015.

epend on C, not on system size

epend linearly on C

3] E. T. Gawlinski and H. E. Stanley. Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs. Journal of Physics A: Mathematical

[4] Alexander E. Holroyd. Sharp metastability threshold for two-dimensional bootstrap percolation. Probability Theory and Related Fields, 125(2):195-224, 2003.



