DETACHMENT TRANSITION IN A MODEL OF CONVEXIFICATION OF CLUSTERS OF DISCS

DAVID MARTIN-CALLE, OLIVIER PIERRE-LOUIS

Institut Lumière Matière Université Claude Bernard Lyon 1

ABSTRACT

Adhesion controlled by the roughness of the surfaces in contact, or by third bodies at the interface, is a recurring problem in contact physics, with applications ranging from geophysics to nanosciences. Inspired by experimental observations [1] of a detachment transition when one increases the density of nanoparticles intercalated between a graphene sheet and a flat substrate, we propose a simple statistical model which displays a similar transition. Experimental observations suggest that the observed transition results from collective effects that expand the detachment zones in the regions where its boundary is concave. Thus, we build a model based on the convexification of percolation clusters associated to individual detachment areas induced by each particle. Numerical simulations reveal that this model exhibit a discontinuous transition, i.e., the transition occurs via a macroscopic avalanche triggered by a microscopic change (here, adding a single particle to the system). Our model therefore shares similarities with explosive percolation and bootstrap percolation models. We also propose a quantitative interpretation of the unbinding transition of graphene with intercalated nanoparticles based on this model.

INSPIRATION: EXPERIMENTS

- Unbinding transition observed when increasing the thickness of graphene
- Detachment zones exhibit collective effects

Applications:

- Engineering: Contact mechanics, tribology
- Geology: fragments in faults, fracking
- Graphene: Strain Engineering

Other applications of our model:

- Third-bodies problem
- Imbibition in 2D domains with pre-wetted zones
- Linear Separability in 2D classification

MODELS

Without collective effects: disc percolation

Figure 3: Illustration of the model of percolation of discs. In red, the percolating cluster

Iterative convexification

Questions raised:

- Order parameter $\Phi(C)$ with $C = \rho_d \pi r_d^2$
- Existence of a transition, threshold value?
- Continuity of the transition?

Avalanche of convexifications lead to transition?

Implementation:

- Discs added one by one (Also some simulations with varying disc radius)
- Free edges or periodic boundary conditions
- Systems containing up to 10⁸ discs

Bootstrap Percolation

Is our convexification model a continuous, isotropic generalization of bootstrap percolation?

RESULTS: MACROSCOPIC AVALANCHES

- Mechanism of transition: an avalanche of convexifications when a critical disc is added
- Discontinuity over one realization
- Distributed transition

RESULTS: FINITE SIZE EFFECTS

Figure 1: $\Phi(C)$ averaged over realizations. Various system sizes and both boundary conditions

- Asymptotic transition at finite *C* or zero *C*?
- Very slow convergence

COMPARISON WITH EXPERIMENTS

Figure 2: Crosses: fitted experimental data, compared with simulation results

Comparison with our system size gives a characteristic lenght $l \simeq 1~\mu m$

CLUSTER SIZE DISTRIBUTION

- Power laws tails at finite C
- Exponents depend on C, not on system size
- Exponents depend linearly on C

REFERENCES

- [1] Mahito Yamamoto, Olivier Pierre-Louis, Jia Huang, Michael S. Fuhrer, Theodore L. Einstein, and William G. Cullen. The princess and the pea at the nanoscale: Wrinkling and delamination of graphene on nanoparticles. *Physical Review X*, 2(4), 2012.
- [2] Raissa M. D'Souza and Jan Nagler. Anomalous critical and supercritical phenomena in explosive percolation. Nature Physics, 11(7):531–538, 2015.
- [3] E. T. Gawlinski and H. E. Stanley. Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs. Journal of Physics A: Mathematical and General, 14(8), 1981.
- [4] Alexander E. Holroyd. Sharp metastability threshold for two-dimensional bootstrap percolation. *Probability Theory and Related Fields*, 125(2):195–224, 2003.