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ABSTRACT
Adhesion controlled by the roughness of the surfaces in con-
tact, or by third bodies at the interface, is a recurring prob-
lem in contact physics, with applications ranging from geo-
physics to nanosciences. Inspired by experimental observa-
tions [1] of a detachment transition when one increases the
density of nanoparticles intercalated between a graphene
sheet and a flat substrate, we propose a simple statistical
model which displays a similar transition. Experimental
observations suggest that the observed transition results
from collective effects that expand the detachment zones in
the regions where its boundary is concave. Thus, we build
a model based on the convexification of percolation clus-
ters associated to individual detachment areas induced by
each particle. Numerical simulations reveal that this model
exhibit a discontinuous transition, i.e., the transition oc-
curs via a macroscopic avalanche triggered by a microscopic
change (here, adding a single particle to the system). Our
model therefore shares similarities with explosive percola-
tion and bootstrap percolation models. We also propose
a quantitative interpretation of the unbinding transition
of graphene with intercalated nanoparticles based on this
model.

RESULTS: MACROSCOPIC AVALANCHES
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• Mechanism of transition: an avalanche of con-
vexifications when a critical disc is added

• Discontinuity over one realization

• Distributed transition
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RESULTS: FINITE SIZE EFFECTS

Figure 1: Φ(C)
averaged over re-
alizations. Various
system sizes and
both boundary
conditions
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• Asymptotic transition at finite C or zero C ?

• Very slow convergence

COMPARISON WITH EXPERIMENTS

Figure 2: Crosses : fitted ex-
perimental data, compared with
simulation results

Comparison with our sys-
tem size gives a characteris-
tic lenght l ' 1 µm

CLUSTER SIZE DISTRIBUTION
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• Power laws tails at finite C

• Exponents depend on C, not on system size

• Exponents depend linearly on C

INSPIRATION: EXPERIMENTS

• Unbinding transition observed when increasing
the thickness of graphene

• Detachment zones exhibit collective effects

Applications:

• Engineering: Contact mechanics, tribology
• Geology: fragments in faults, fracking
• Graphene: Strain Engineering

Other applications of our model:

• Third-bodies problem
• Imbibition in 2D domains with pre-wetted

zones
• Linear Separability in 2D classification

MODELS

Without collective effects: disc percolation

Figure 3: Illustration of the
model of percolation of discs. In
red, the percolating cluster

Iterative convexification
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Questions raised:

• Order parameter Φ(C)
with C = ρdπr

2
d

• Existence of a transi-
tion, threshold value ?

• Continuity of the tran-
sition ?

Avalanche of convexifications lead to transition ?

Implementation:

• Discs added one by one (Also some simulations
with varying disc radius)

• Free edges or periodic boundary conditions

• Systems containing up to 108 discs

Bootstrap Percolation

Is our convexification model a continuous,
isotropic generalization of bootstrap percola-
tion ?


