Confined vs. Unconfined: Triadic Resonant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA ¹ Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA ² Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France ³ Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France ⁴ Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Key Points

Cylindrical modes are defined by (ω, l, m, p);
They always satisfy the IW dispersion relation;
Sub-harmonics may be created, forming a triad;
In unconfined geometry, we show that all of the four TRI conditions are exactly satisfied;
In confined geometry, we show that there is an approximate TRI since the spatial resonance may not be satisfied due to the boundary conditions;
When approximate, the quality of the resonance can be estimated thanks to an asymptotic expansion of the Bessel functions.

Introduction

Non-linear triads of internal waves have been studied in two-dimensional Cartesian geometry, where the Triadic Resonant Instability (TRI) description exhibits resonance conditions on the wave frequencies and wave numbers. In cylindrical geometry, internal

Experimental Setup

waves are described as Kelvin modes, that can be defined through their vertical velocity field $v_z(r, \theta, z, t) = v_z^0 J_p(lr) e^{i(\omega t - mz - p\theta)},$

with ω the wave frequency and l, m, and p the radial, vertical, and azimuthal wave numbers. The formation of triads is investigated in the unconfined and in the confined configurations.

Figure 1: Experimental setup used to produce the wave fields [3]. A confining cylinder (same radius as generator) can be added.

Unconfined Wave Fields

	Physical domain	Wave numbers	Resonances
Temporal	$t \in \mathbb{R}$	$\omega \in \mathbb{R}$	$\omega_0 = \pm \omega_1 \pm \omega_2$
Radial	$r \in \mathbb{R}^+$	$l \in \mathbb{R}$	$l_0 = \pm l_1 \pm l_2$
Azimuthal	$\theta \in [0; 2\pi]$	$p \in \mathbb{N}$	$p_0 = \pm p_1 \pm p_2$
Vertical	$z \in \mathbb{R}$	$m \in \mathbb{R}$	$m_0 = \pm m_1 \pm m_2$

Table 1: TRI in unconfined domain, with exact resonance conditions.Fields at ω_0 Fields at ω_1 Fields at ω_2

Confined Wave Fields

	Physical domain	Wave numbers	Resonances		
Temporal	$t \in \mathbb{R}$	$\omega \in \mathbb{R}$	$\omega_0 = \pm \omega_1 \pm \omega_2$		
Radial	$r \in [0; R]$	$l \times R$ a Bessel zero	$l_0 \simeq \pm l_1 \pm l_2$		
Azimuthal	$\theta \in [0; 2\pi]$	$p \in \mathbb{N}$	$p_0 = \pm p_1 \pm p_2$		
Vertical	$z \in [0; H]$	$m=n\pi/(2H), n\in\mathbb{N}$	$m_0 = \pm m_1 \pm m_2$		
Table 2: TRI in confined domain, with approximate resonance conditions on l .					

• $p_0 = 0, p_1 = +1$, and $p_2 = -1 \rightarrow p_0 = p_1 + p_2$. • $l_0 = 42 \text{ m}^{-1}, l_1 = 31 \text{ m}^{-1}, \text{ and } l_2 = 11 \text{ m}^{-1} \rightarrow l_0 = l_1 + l_2$.

References

[1] L.E. Baker and B.R. Sutherland.

The evolution of superharmonics excited by internal tides in non-uniform stratification. *Journal of Fluid Mechanics*, 891:R1:1–13, 2020.

[2] S. Boury, P. Maurer, S. Joubaud, T. Peacock, and P. Odier.

Triadic resonant instability in confined and unconfined axisymmetric geometries. Journal of Fluid Mechanics, in preparation.

[3] S. Boury, T. Peacock, and P. Odier.

Excitation and resonant enhancement of axisymmetric internal wave modes. *Physical Review Fluids*, 4:034802, 2019.

[4] S. Boury, T. Peacock, and P. Odier.

Experimental self-generation of axisymmetric internal wave super-harmonics. *Physical Review Fluids*, under review. Figure 4: Confined velocity fields of the triad, filtered at the three wave frequencies. Experiment at f = 0 rad \cdot s⁻¹, N = 0.81 rad \cdot s⁻¹, with $\omega_0 = 0.74$ rad \cdot s⁻¹, $\omega_1 = 0.30$ rad \cdot s⁻¹, and $\omega_2 = 0.44$ rad \cdot s⁻¹; we have a frequency resonance $\omega_0 = \omega_1 + \omega_2$.

Contact: sb7919@nyu.edu