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Key Points

•Cylindrical modes are defined by (ω, l, m, p);
•They always satisfy the IW dispersion relation;
•Sub-harmonics may be created, forming a triad;
• In unconfined geometry, we show that all of the
four TRI conditions are exactly satisfied;

• In confined geometry, we show that there is an
approximate TRI since the spatial resonance may
not be satisfied due to the boundary conditions;

•When approximate, the quality of the resonance
can be estimated thanks to an asymptotic expan-
sion of the Bessel functions.

Introduction

Non-linear triads of internal waves have been stud-
ied in two-dimensional Cartesian geometry, where the
Triadic Resonant Instability (TRI) description ex-
hibits resonance conditions on the wave frequencies
and wave numbers. In cylindrical geometry, internal
waves are described as Kelvin modes, that can be
defined through their vertical velocity field

vz(r, θ, z, t) = v0
zJp(lr)ei(ωt−mz−pθ),

with ω the wave frequency and l,m, and p the radial,
vertical, and azimuthal wave numbers. The formation
of triads is investigated in the unconfined and in the
confined configurations.

Experimental Setup

Figure 1: Experimental setup used to produce the wave fields [3].
A confining cylinder (same radius as generator) can be added.

Unconfined Wave Fields

Physical domain Wave numbers Resonances
Temporal t ∈ R ω ∈ R ω0 = ±ω1 ± ω2
Radial r ∈ R+ l ∈ R l0 = ±l1 ± l2

Azimuthal θ ∈ [0; 2π] p ∈ N p0 = ±p1 ± p2
Vertical z ∈ R m ∈ R m0 = ±m1 ±m2
Table 1: TRI in unconfined domain, with exact resonance conditions.
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Figure 2: Unconfined velocity fields of the triad, filtered at the three wave frequencies. Exper-
iment at f = 0.29 rad · s−1, N = 0.97 rad · s−1.
We measure:
•ω0 = 0.80 s−1, ω1 = 0.50 s−1, and ω2 = 0.30 s−1 → ω0 = ω1 + ω2.
•m0 = 16 m−1, m1 = 63 m−1, and m2 = 49 m−1 → m0 = m1 −m2.
• p0 = 0, p1 = +1, and p2 = −1 → p0 = p1 + p2.
• l0 = 42 m−1, l1 = 31 m−1, and l2 = 11 m−1 → l0 = l1 + l2.
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Confined Wave Fields

Physical domain Wave numbers Resonances
Temporal t ∈ R ω ∈ R ω0 = ±ω1 ± ω2
Radial r ∈ [0; R] l ×R a Bessel zero l0 ' ±l1 ± l2

Azimuthal θ ∈ [0; 2π] p ∈ N p0 = ±p1 ± p2
Vertical z ∈ [0; H ] m = nπ/(2H), n ∈ N m0 = ±m1 ±m2
Table 2: TRI in confined domain, with approximate resonance conditions on l.
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Figure 3: Graphic characterisation of the radial resonance in confined domains.

Figure 4: Confined velocity fields of the triad, filtered at the three wave frequencies. Exper-
iment at f = 0 rad · s−1, N = 0.81 rad · s−1, with ω0 = 0.74 rad · s−1, ω1 = 0.30 rad · s−1,
and ω2 = 0.44 rad · s−1; we have a frequency resonance ω0 = ω1 + ω2.
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