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Abstract

Modeling the nonlinear dynamics of neural networks can help to make sense of phe-
nomena observed in neural recordings. Here, we focus on beta frequency (∼ 20Hz)
oscillations that are observed in motor cortex during movement preparation [1]. In
several experiments, local field potentials (LFPs) recorded with multi-electrode arrays
have been observed to display transient oscillations with non-zero phase shifts between
electrodes. They organize into a variety of traveling waves (planar, radial, rotating,..)
[2, 3, 4]. Beta oscillations have been successfully modeled [5] as arising from reciprocal
interactions between randomly connected excitatory (E) pyramidal cells and local in-
hibitory interneurons (I). The synchronization properties of distant modules produced
by distant-dependent excitatory coupling have also been studied [5, 6]. Here, we use a
rate model (mean-field) description of the local neural activity that has been shown to
provide an accurate population-level description of more detailed network simulations
based on coupled spiking neurons [6]. Using distance-dependent interactions and delays
matching those reported from experiments, we study this model in 2D to investigate
possible origins of transient bursts of beta oscillations and the observed spatial waves.
Stochastic local entries that vary on a long-time scale (200ms) are introduced to mimic
inputs to the motor cortex from other neural areas. We compare our simulation results
to electrophysiological datasets recorded in motor cortex of macaque monkey during an
instructed delayed reach-to-grasp task [4]. We find that our model closely agrees with
the recordings. It reproduces the observed power spectrum of the local field potential,
produces a variety of traveling waves of speed and types similar to those seen in experi-
ments. Our results suggest that both time-varying external entries and intrinsic network
architecture shape the LFP dynamics of motor cortex.

Propagating waves in motor cortex

Beta oscillations are observed in motor cortex during the preparatory phase of move-
ment. For monkeys trained to do an instructed delayed reach-to-grasp task, local
field potentials (LFPs) exhibit non-zero phase shifts on separate electrodes of a multi-
electrode array and are organized into waves [2, 3, 4].

Figures reproduced from Rubino et al [2], Denker et al[4]

Rate-model description of an E-I module

Beta oscillations are modeled as arising
from the local interaction between an ex-
citatory (E) and an inhibitory (I) neuronal
population. Their activity is described us-
ing a rate model formalism [6]:

τE(IE)
dIE
dt

= −IE + IextE + wEErE − wEIrI,

τI(II)
dII
dt

= −II + IextI + wIErE

rE = ΦE(IE), rI = ΦI(II)

IE and II are the mean inputs in each pop-
ulation. The adaptive time scales, τE and
τI, and the neuron spiking rates, rE and rI,
are obtained from the inputs by the follow-
ing curves :

Phase diagram and example of oscillations
of the rates (blue, rE ; red, rI ; parameters
: red dot in the phase diagram):

In experiments, recordings show a lot of
power at very low frequencies. In order to
model something similar, we consider ex-
ternal inputs that fluctuate on a long time
scale described by η,where η is an O-U noise
with a long (∼ 200 ms) time constant τL.

IextE = Iext,0E + σext
E η, IextI = Iext,0I + σext

I η

τL
dη

dt
= −η + ξ, ⟨ξ(t)ξ(t′⟩ = δ(t− t

′
)

Oscillations about the stable fixed point in-
duced by the fluctuating inputs :

The power spectrum and the autocorrela-
tion of the single module computed from
linear response theory agree with the simu-
lation results :

Network model

In order to compare with the experimental results, we consider a 2d spatial network with a delayed
interaction, and a Gaussian spatial profile, as well as both local and global fluctuating inputs :

τE(IE)(n, t)
∂IE(n, t)

∂t
= −IE(n, t) + IextE (n, t) + wEE[

∑
m=1,...,L∗L

C(||m− n||)rE(m, t− lD)]− wEIrI(n, t)

τI(II)(n, t)
∂II(n, t)

∂t
= −II(n, t) + IextI (n, t) + wIE[

∑
m=1,...,L∗L

C(||m− n||))rE(m, t− lD)]

IextE,I(n) = Iext,0E,I + σext
E,I(

√
cη ηall +

√
(1− cη) ηn), C(l) =

1

Z
exp[−(l/λ)2], Z =

∑
l

exp[−(l/λ)2]

Comparison between simulation and

experimental results

We observed similar power spectrum of the local field potential, a variety
of traveling waves of speed and types to those seen in experiments.

Experiment Simulation

Conclusions

•A simple model of interacting E-I modules with fluctuating inputs ac-
counts for the experimental data

• It predicts that (thalamic?) inputs to the motor cortex should be both
local and global.

.
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