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1. Multiplicative noise and on-off intermittency

e Instabilities arise in many systems at a parameter threshold (e.g. onset of convection,
3D instabilities in quasi-2D flows, dynamo instability, sediment transport, etc.)

e Typically, the system is embedded in an uncontrolled noisy environment.

e The fluctuating properties of the environment affect the control parameters of the insta-
bility, which leads to parametric (also known as multiplicative) noise.

e Parametric noise close to an instability threshold = on-off intermittency, switching
aperiodically between a large-amplitude “on” state and a small-amplitude “oft” state.
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e The noisy supercritical pitchfork bifurcation gives a minimal example of this behaviour

X = (u+ F()X — yX°, (1)

with mean growth rate p, nonlinear coefficient y > 0, and the random noise f(t).

2. (Generalised) central limit theorem & stable laws

e Typically f(t) in (1) is taken to be Gaussian white noise. This is motivated by the CLT:

Given N identically distributed RVs Xj,..., Xn with mean 0 and variance o2, then

SN = (X1 + . + Xn) VN Y22 S~ A(0, 62), if and only if
1) The X; are mutually independent, i.e. (X;X;) =0 for i # j and

2) The X; have finite variance.

e Both assumptions of the CLT may be violated when choosing f(t).

1) Finite correlation time = spectrum at zero frequency important [1].

2) Infinite variance = noise from non-equilibrium source (no temperature)

e Generalised CLT for 2): the scaled sum of the X; tends to a stable distribution p, g(x),
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(x)dx = exp {—|l<|a (1 — iBtan (7) ) } .

e Some simple properties of stable distributions

— Choosing a = 2 gives Gaussian 041 — zz;ﬁ?j
— pqapX)20=0<a<2, -1<B<1. 03— T
— For |B] <1, p4,p5(X) X9 (1T + Bsign(x))x_1_a. §0.2 long tails
— This breaks down on one side for § = +1. 0.1-
There, pq g(x) o< exp (—Cst. XaT 0 short tails
= one-sided distribution for B = £1, a < 1. ~10 -5 0 5 10

e Motion driven by stable white noise = Lévy flight

3. The fractional Fokker-Planck equation

e For (1) with a-stable white noise (f(t)dt = c/t”al—_(t), F(t) a-stable), the PDF of X obeys

B

Otpy(y, t) = —ay[(u — ve?Y)pyly, t)] + D, pyly, 1), (2)

with Y = log(X), the (Stratonovich) fractional Fokker-Planck equation, and a linear

operator D(O('B (Riesz-Feller fractional derivative). The variable Y performs a Levy flight.

e For o = 2 (Gaussian white noise), DXO(’B = 0)2(. There for p > 0, the stationary PDF is

pst(x) = Nx~1HHe=2x’ 3)

Some important properties

— Critical transition at y = 0 (deterministic threshold)
— Power law divergence at small x with exponent — —1 as py — 0, cut-off at large x
— Anomalous scaling near onset: for all n > 0, (X") xpas y— 0

e Goal: extend this result to a < 2.

e Problem: Can only solve (2) analytically for y = 0, the log-stable process,
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px(x, t) = , (4)

which does not converge to a stationary state, since probability escapes to +oc.

e For y > 0, a stationary state exists and its asymptotics can be computed.

4. The linear regime (y = 0)

The leakage of probability depends on «, 5 and p in this case. E.g. for y > 0,5 =0,
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Critical difference: a > 1 (mean of noise finite) and a < 1 (mean of noise infinite)

e For 1 < a < 2: critical transition at gy = 0 from probability accumulating at x =0
(stable origin) or leaking to x = oo (unstable origin).

efFor a =1, and for o < 1, B < 1, the origin is always stable

eFor a <1, B =1 (noise positive definite), the origin is always unstable

5. The nonlinear regime (y > 0)

Typical time seriesa) a=15,=0,b) a=05, =1.0,¢c) a=0.5, B =—1.
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A critical transition only occurs for a > 1. Else, the origin is either always stable/unstable.
The exact asymptotics of px st in steady state are summarised in the table below

5 Px st(x — 0) Px st(x — 00)
—1 C(ux)~ " log=%(1/x) exponential decay
(—1,1) C(ux)~""log~%(1/x) | Cy 'x3log~9(x)
1 ox x~ 1 HAalH) Cy~ 'x3log~%(x)

Numerically integrating (2) confirms asymptotics = predict critical exponents (heuristic)
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6. Conclusion and Outlook

e Different anomalous critical exponents and station-
ary PDFs compared to Gaussian noise.

e First step in the study of instabilities in the pres-
ence of multiplicative Lévy noise.
tions can be further pursued, including truncated
Lévy noise, combined Lévy-Gaussian noise, finite-
velocity Lévy walk, different nonlinearities, higher
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dimensions and time statistics.

e Since Lévy statistics are found in many physi- —1
cal systems, the anomalous critical exponents pre- 0
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dicted here for instabilities subject to Lévy noise
may be observable experimentally.
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