Active Volatile Drops on Liquid Baths

Benjamin Reichert, Jean-Benoît Le Cam, Arnaud Saint-Jalmes and Giuseppe Pucci Soft Matter Group, Institute of Physics of Rennes UMR 6251, Rennes, France

When a drop of volatile alcohol is deposited onto the surface of a bath of immiscible liquid, the drop spontaneously propels on the surface.

The presence of a thin film of bath liquid coating the drop is associated to straighter trajectories.

Self-propulsion is triggered by a thermocapillary convective instability.

Spontaneous symmetry breaking of the surface temperature field...

A propulsive force emerges as a result of the viscous stress response of the liquid bath

to the Marangoni stress exerted on the drop's lower interface.

Relation between the drop velocity and the evaporation flux J (i.e. the activity source) in the transient regime?

Force balance between Marangoni traction and Stokes drag

$$v \sim \left| rac{d\gamma}{dT} \right| rac{\Delta T}{\eta_2}$$
 with $\Delta T = T^{++} - T^+$

Interfacial tension γ

Bath viscosity η_2

Thermal balance dominated by heat convection

$$ho_2 \, C_{
m p} \, \Delta T u_{
m M} \propto
ho_1 \mathcal{L}_v J$$

with the velocity of the Marangoni flow

$$u_{\rm M} \sim \left| \frac{d\gamma}{dT} \right| \frac{\Delta T}{\eta_2}$$

Combining force and thermal balance

$$v \sim \left[\frac{\rho_1 |d\gamma/dT| \mathcal{L}_v J}{\rho_2 \, \eta_2 C_{\mathrm{p}}} \right]^{1/2}$$

In the stationnary regime, the activity of the system can be tuned by varying bath viscosity $\,\eta_2$

Evaporation is governed by two transport processes of vapour in air, diffusion and convection.

The evaporation flux is the sum of a diffusion and a convection contribution

$$J_s = a + b/\eta_2$$

Drop velocity at variable activity is well captured for different radii by combining force and thermal balances

$$v_s \sim \left[rac{
ho_1 |d\gamma/dT| \mathcal{L}_v(a+b/\eta_2)}{
ho_2 \, \eta_2 \, C_{
m P}}
ight]^{1/2}$$

