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We explored some new constraints that stationary processes
impose on the fluctuations of power in the context of turbulence. Here we
first recall some properties of the fluctuations of the injected power, the
dissipated power and the energy flux that have to converge at vanishing
frequency. Then we show that these properties are fulfilled by GOY–shell
model that share intermittent properties of turbulence. Hence constraints on
the power fluctuations might force some intermittency in the GOY–shell
model . Indeed we show that the constraint on the power fluctuations implies
a relation between scaling exponents. This relation is fulfilled by the GOY–
shell model and agrees the She-Leveque formula. It also fixes the intermittent
parameter of the log-normal model to a realistic value.

Abstract :

Dissipative systems:
𝑑𝐸

𝑑𝑡
= 𝐼 − 𝐷 : Energy balance with I injected and D 

dissipated powers
Stationary processes  𝐼 = 𝐷 but also the equivalent relations :
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Turbulent systems: dissipation occurs at much smaller scales than injection. The
input power must cascade up to the dissipative scale.

𝑑𝐸𝐾

𝑑𝑡
= 𝐼 − Π𝐾 where 𝐸𝐾= coarse-grain energy of the velocity Low Pass filtered up

to the wave number 𝐾;
Π𝐾= energy flux up to K

Turbulent hypothesis: there is an inertial range where Π𝐾 does not depend on the
injection and the dissipation. In addition to 𝐼 = Π𝐾 = 𝐷 one has

Properties of dissipative and turbulent systems

𝜏𝐼𝜎(𝐼)
2 = 𝜏Π𝐾𝜎(Π𝐾)

2 = 𝜏𝐷𝜎(𝐷)
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The GOY-shell model

Dynamical equation mimicking Navier-Stokes equation in discrete and 
exponentially, kn=ko2n spaced wave number space. It satisfies the SL model
𝑑𝑢𝑛

𝑑𝑡
= ℱ 𝑢𝑛−2, 𝑢𝑛−1, 𝑢𝑛+1 , 𝑢𝑛+2 + 𝑓4 ∙ 𝛿𝑛,4 + 𝜈𝑘𝑛

2𝑢𝑛 ; 

𝑢𝑛 ∈ ℂ ; 𝑛 ∈ 1:𝑁 , 𝑘𝑛 = 2𝑛/16
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In the inertial range: 
𝒅𝑬𝑲

𝒅𝒕
= 𝑰𝑲 −𝜫𝑲

Conclusions
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Results and scalings

The relation  𝜏𝐼𝜎(𝐼)
2 = 𝜏𝐷𝜎(𝐷)

2

= 𝜏Π𝐾𝜎(Π𝐾)
2holds for the GOY shell model 

In the GOY shell model: 
𝜎(Π𝐾)

2 ∝ 𝐾2 𝑢6 (1.a).
∝ 𝐾2−𝜁6 (1.b)
∝ 𝐾0.27 (1.c)

⇒ 𝜏Π𝐾 ∝ 𝐾−0.27

What is 𝜏Π𝐾 ≠ 𝜏𝐾(∝ 𝐾−0.6) ??

𝜏𝐾 the characteristic time of the 
shell K

Hypothesis: there is a given characteristic time for coarse-grain                       

quantities. Π𝐾, 𝑈𝐾 = σ𝑖=1
𝑀 𝑢𝑖,   …. . 

It can be computed as follow
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𝑈𝐾 0 𝑈𝐾 𝜏 𝑑𝜏
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~
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𝑀 𝜏𝑖𝜎 𝑢𝑖

2

σ𝑖=1
𝑀 𝜎 𝑢𝑖

2 𝐾=2𝑀≫1
𝐾𝜁2−1 ⟹ 𝜏Π𝐾 ∝ 𝐾−0.28 !!!!

New relation between intermittent scaling exponents 

𝜁6 −𝜁2 −1 = 0
• Holds for She-Leveque Model (K41: 𝜁5 −𝜁2 −1 = 0)
• Fix the intermittent free parameter  of the log-normal parameters
to a realistic value =0.3.

Scaling exponents and intemittency

Scaling exponents for the Fourier mode : 

𝑢𝑘
𝑝
∝ 𝑘−𝜁𝑝

K41: 𝐼 = Π𝐾 ⟹ 𝜁3 = 1
Intermittency ⟹ 𝜁𝑝 ≠ p/3

• Log-normal model:

𝜁𝑝 =
p

3
+ 𝜇/18(3𝑝 − 𝑝2)

• She-Leveque (SL) model

𝜁𝑝 = 𝛾𝑝 +
1 − 3𝛾 1 − 𝛽

𝑝
3

1 − 𝛽
; 𝛾 =

1

8
; 𝛽~0.58

We show that constraints on the fluctuations 
of energy flux in the GOY shell model imposes 
a additional  relation on the intermittent 
scaling exponents:
𝜁6 −𝜁2 −1 = 0

Fitted by the SL model.

NB: extension to real turbulence not so straightforward because global 
quantities are averaged in space (those much less intermittent)


