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Prediction Problem and Committor Function Committor Functions for the Jin and Timmermann model
Committor Function: let x € I" be a point in the phase space I and {X(¢)}j<;<., @ stochastic process taking values in I". x = (x,¥, z) is the vector of the model phase space and {X(t) }o<¢<7 is one realisation of the dynamics.
The first hitting time of aset C C I'is - Observable O: x component. Threshold e = —1. Sets A = {(x,%) [t > T} and B = {(x,t) |z > €}.
To(x) = inf{t : X(¢t) € C'| X(0) = x}. (1)
The committor function q(x) is the probability that the first hitting time of set B C I" is smaller than the first hitting time of set A C I'[4, 7, 1]:
a(x) = P(rp(x) < 74(x)). (2) | |
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Prediction Problem: we are interested in computing the probability that an observable O(X, t) of the system reaches a given threshold ¢ within a fixed
time 7', i.e. P(maxg<;<7 O(X(%),t) > € | X(0) = x). This is a committor function for an auxiliary process Y; = {O(X¢, 1), t}[3], where the sets A and B
are defined as

A={(zt);, z>€;t€]0,T]},
B={(z,T); z <e}. (3)
Using these definitions for the sets, we obtain
P (OgaicT O(X(t),t) > & | X<O> — X) — P(TA(X> < TB(X>) — q(X). (4) -12  -10 -08 —35 —04 02 00 -12  -10 -08 —;5 04 -02 00

Fig. 1: Colour plot of the committor function ¢(x, y, z) in the plane = = —2.8310, for three values of the noise amplitude, o = 0 (left, deterministic), 0.00005 (middle) and 0.001 (right). Regions with uniform ¢ = 0 or 1

values correspond to deterministic predictability, smooth regions with 0 < ¢ < 1 to probabilistic predictability, and regions with sensitive dependence on initial conditions to unpredictable parts of phase space.

The Jin and Timmermann model Left panel Fig. 1 0 = 0 — ¢(x) = 0 or g(x) = 1 (deterministic dynamics). We see 3 regions:
1. large values of z, in a large yellow area all trajectories reach the threshold and ¢(x) = 1,
The Jin and Timmermann model is toy model for ENSO [5, 6]. The dimensionless equations are 2. in a thick black band, no trajectory reaches the threshold and ¢(x) = 0,
: 2
x = po(xz” —ax)+x(x+y+c—ctanh (v + 2)) — Dy(z,y, 2)&t, 3. everywhere else, we see very fine flaments of alternating yellow and black values. In this area, because of the sensitive dependence on the initial
)= —pd(x° + ay) + Dy(z,y, 2)&, (5) conditions, the occurence of El-Nifo is very difficult to predict.
. b
z=0k—2-7) Middle panel Fig. 1 (intermediate value of noise) o = 0.00005 — 4 regions:
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where £(t) is a Gaussian white noise and 1. two regions (1 and 2) of perfect predictability, where the event will occur with probability 1 or 0, respectively,

2. region (3) with good predictability properties where a value g(x) can clearly be predicted with very mild dependence with respect to initial conditions.
We call this area the probabilistically predictable region,

Da(z,y, 2) = [(1+ pd)a’ + zy + ca(1l — tanh (z + 2))]o,
Dy(l’a Y, Z) — péxQUa
0, p, ¢, k,a] = [0.225423, 0.3224, 2.3952, 0.4032, 7.3939)]. 3. region (4) which are unpredictable in practice, the strong dependence with respect to the initial condition prevent any practical prediction, either

deterministic or probabilistic.

Strong EI-Nino events if z > ¢ = —1.

o = 0 —Two different attractors [2]: one limit cycle that contains strong EI-Nino events, one strange rig o: The two intertwined attractors of the Jin and Regions 1), 2) and 4) are reminiscent of their deterministic counterparts. Region 3) is a region where the stochasticity is large enough to smooth out the
attractor without EI-Nino events. The two attractors are intertwined with each other (Fig. 0). Timmermann model (limit cycle in blue and strange deterministic values of ¢(x).

o K o, —Switching between two attractors. The occurence of the next EI-Nino event is then stochastic.  attractor in red). Right panel Fig. 1 (large value of noise) o = 0.001 — The deterministic predictability is lost for most initial points (¢(x) # 0 and ¢(x) # 1), the committor
o > o, —Dynamics is completely dominated by the noise. Distinction between attractors becomes meaningless. function is smooth nearly everywhere, the occurence of EI-Nino is probabilistically predictable.
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strange attractor regime to the strong Nino event regime, as
a function of the noise amplitude o, in log-log coordinates. In
« For any small values d and v, there always exist points in the strange attractor and in the boundary of the basin of attraction at a distance smaller than d and the limit of small noise amplitude o < 107%, E[r.] seems to
be closer to a power-law o~ (green line) than to the standard
Arrhenius law.

» a finite distance d > 0 and a quasipotential barrier AV > 0 exist, but they are extremely small. tems: From Materials to Chemical Biology Volume 1. Springer, 2006, pp. 453—493.

a quasipotential differences AV smaller than v.
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