Stretching vs. bending in thin plates: the decay of transverse curvature in curved strips

Thomas Barois

Laboratoire Ondes et Matire d'Aquitaine, Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France thomas.barois@u-bordeaux.fr

If one compares the energy cost of stretching vs. bending for a thin elastic plate, one finds that the stretching deformations are orders of magnitude above the bending deformations (typically 10^6 for a paper sheet). As a consequence, the Rayleigh principle states that such thin objects will deform *under ordinary circumstances* (in the words of Rayleigh) without stretching deformations. The family of deformations without stretching are the isometric or the developable transformations.

In this presentation, I will discuss some situations in which pure bending deformations are not observed for thin elastic plates. I will present a simple experiment (see figure 1) in which a flat elastic strip is pressed against a circular cylinder. Although a cylinder is a developable surface, the strips does not follow it, and after a finite distance of the cylinder, the strip is flat.

Figure 1. Side view a rectangular elastic strip (length 30 cm, width 20 cm, thickness 3 mm) pressed against a circular cylinder of radius 10 cm.

I will present a 1D-model that predicts quantitatively the finite persistence length of the curved region. This model describes the sheet surface by the transverse curvature function c(x).

References

1. T. BAROIS, L. TADRIST, C. QUILLIET & Y. FORTERRE, How a Curved Elastic Strip Opens, *Phys. Rev. Lett.*, (2014).