Perturbation Theory in Algebraic Setting

Lorenzo Valvo & Michel Vittot

Centre de Physique Theorique, Campus de Luminy, 13288 Marseille valvo@cpt.univ-mrs.fr

We propose a perturbation algorithm which works on any Lie algebra \mathbb{V} . We consider a dynamical system on \mathbb{V} , which preserves a subalgebra \mathbb{B} of \mathbb{V} . In general when we add a perturbing term to the original dynamical system, the subalgebra \mathbb{B} won't be preserved anymore. We show that under suitable hypothesis, there exists a new dynamical system, conjugated to the perturbed one, which preserves \mathbb{B} up to terms quadratic in the perturbation. By this formula, classical perturbation theory can be extended to noncanonical Poisson system : for instance, the Euler-Poinsot equations for a rigid body, ideal MHD, the Maxwell-Vlasov and Vlasov-Poisson systems. In particular, we show that, for a time dependent top, it is possible to iterate the formula and to get a KAM theorem : for a large set of initial data, the algebra \mathbb{B} , like the tori of classical mechanics, get deformed into a new algebra preserved by the perturbed flow.