

Morphogenesis and morphodynamics of sandy beaches

Eduardo Monsalve^(a), Benjamin Thiria^(b) and Sylvain Courrech du Pont^(a)

(a) Lab. Matière et Systèmes Complexes, Université Paris Diderot (b) Lab. Physique el Mécanique des Milieux Hétérogènes, ESPCI – Paris, Sorbonne, Université, Université Paris Diderot

Experimental set-up

Fig 1: Experimental set-up. A piston type wavemaker generate waves propagating trough a deep water region before attaining a mild slope beach of monodirsperse PVC grains.

Temporal evolution

Fig 2: Shapshots of the beach profile at different times for one experiment. f=0.8Hz, a=1.5 mm.

Breaking depth

Wave parameters and beach slope

Fig 3: Experimentally measured breaking depth an prediction curve with fitted $\gamma.$ Inset shows wave height H_B and depth h_B

Fig 4: Phase diagram a vs f for different experimental series

Fig 5: (a) Swash zone slope. (b) Beach step slope

Vortex life time

Fig 6: Vortex life time vs wave frequency

Reflection coefficient

Fig 7: Reflection coefficient as a function of Dean parameter.

Fig 8: Reflection coefficient as a function of Dean parameter for low frequency and wave amplitude.

