Subcritical transition to turbulence in wall-bounded flows: the case of plane Poiseuille flow

Paul Manneville¹ & Masaki Shimizu²

¹Hydrodynamics Laboratory, CNRS-UMR7646, École Polytechnique, Palaiseau, 91128 France ²Graduate School of Engineering Science, Osaka University, Toyonaka, 560-0043 Japan plane Poiseuille flow driven by a pressure gradient

- numerical simulations, program by M.S. (NIFS's FUJITSU FX100 "Plasma Simulator")
- wide domain $500 \times 2 \times 250$ (also $1000 \times 2 \times 500$ and $250 \times 2 \times 125$)
- long durations, statistical steady state

global stability for $R < R_{\rm g} \approx 700$ transitional regime with laminar-turbulent texture for $R \lesssim R_{\rm t} \approx 4000$; essentially "featureless" for $R_{\rm t} < R$

ullet decay at $R_{
m g} \sim$ directed percolation (Sano &Tamai, 2016) ??? \sim truncated scenario

our article: arXiv:1808.06479 [physics.flu-dyn]

• transition at $R_t \rightsquigarrow$ emergence of pattern at decreasing $R \Rightarrow$ Fourier analysis (preliminary, $\exists R_t$?)

