

Effet de confinement lors de l'étalement de suspensions nonbrowniennes

Matthieu Roché¹ with Menghua Zhao¹, Alice Pelosse¹, Élisabeth Guazzelli^{1,2} and L. Limat¹

Matière et Systèmes Complexes, Paris
IUSTI, Marseille

Interplay between $d_{\rm b}$ and ℓ and confinement close to the contact line?

Rencontres du Non-Linéaire 2019

Polystyrene beads in PEG-ran-PPG

Bead diameter and volume fraction:

 $\begin{array}{c} 10 < d_{\rm b} < 550 \; \mu m \\ 0.2 < \phi < 0.5 \end{array}$

Viscosity of the suspending liquid

 $\eta = cst = 3600 \text{ mPa s}$ at 20 °C

Isodensity

 ρ_b = $\rho_l \sim 1050 \ kg \ m^{-3}$

O. Pouliquen and E. Guazzelli, J. Fluid. Mech. 852, P1 (2018)

$$\eta_{s} = f(\boldsymbol{\phi}, \boldsymbol{\phi}_{c}; \dot{\boldsymbol{\chi}}, \boldsymbol{\partial}_{\boldsymbol{k}})$$

Polystyrene beads in PEG-ran-PPG Bead diameter and volume fraction:

> $10 < d_b < 550 \ \mu m$ $0.2 < \phi < 0.5$

Viscosity of the suspending liquid

 $\eta = cst = 3600 \text{ mPa s}$ at 20 °C

Isodensity

$$\rho_{\rm b} = \rho_{\rm l} \sim 1050 \text{ kg m}^{-3}$$

O. Pouliquen and E. Guazzelli, J. Fluid. Mech. 852, P1 (2018) $\eta_{s} = f(\phi, \phi_{c}; \dot{\chi}, \dot{\partial}_{k})$

Polystyrene beads in PEG-ran-PPG Bead diameter and volume fraction:

> $10 < d_b < 550 \ \mu m$ $0.2 < \phi < 0.5$

Viscosity of the suspending liquid

 $\eta = cst = 3600 \text{ mPa s}$ at 20 °C

Isodensity

$$\rho_{\rm b}$$
 = $\rho_{\rm l}$ ~ 1050 kg m⁻³

O. Pouliquen and E. Guazzelli, J. Fluid. Mech. 852, P1 $_{(2018)}$ $\eta_{s} = f(\phi, \phi_{c}; \dot{\chi}, \dot{\partial}_{k})$

Results

Discussion - Model

Polystyrene beads in PEG-ran-PPG Bead diameter and volume fraction:

> $10 < d_b < 550 \ \mu m$ $0.2 < \phi < 0.5$

Viscosity of the suspending liquid

 $\eta = cst = 3600 \text{ mPa s}$ at 20 °C

Isodensity

$$\rho_{\rm b} = \rho_{\rm l} \sim 1050 \text{ kg m}^{-3}$$

O. Pouliquen and E. Guazzelli, J. Fluid. Mech. 852, P1 $_{(2018)}$ $\eta_{s}=f(\phi,\phi_{c};\dot{\chi},\dot{\partial}_{k})$

Discussion - Model

$$\frac{\eta_{s}}{\eta_{0}} = \ln\left(\frac{h}{L}\right) + \frac{\eta_{s}(\varphi) - \eta_{0}}{\eta_{0}} \ln\left(\frac{h}{d_{p}}\right)$$

