Critical transitions in geometrically constrained incompressible turbulence

Adrian van Kan¹ & Alexandros Alexakis²

Laboratoire de Physique Statistique, École Normale Supérieure, Université Pierre et Marie Curie, 24 rue Lhomond, 75005 Paris adrien.van.kan@ens.fr

Abstract. Geophysical and astrophysical flows are often subject to geometrical constraints such as thinness in a particular direction. Geometrical constraints strongly affect the nature of flow at high Reynolds numbers Re. This is related to the well-known fact that the behaviour of flows at large Re is depends on the dimensionality of the system. In the two-dimensional Navier-Stokes equations, conservation of enstrophy in addition to energy gives rise to an inverse energy cascade, a transfer of energy to the large scales, while in three dimensions, vortex stretching transfers energy to small scales in a direct cascade. For the idealised case of forced incompressible three dimensional flow in a triply-periodic box with dimensions $L \times L \times H$, with spectrally local forcing at k_f at fixed energy injection rate, it has been found that for high Re and small A = H/L, a transition occurs when $S = k_f H$ is decreased below $S_c \approx 0.5$, [1,2,3]. For $S > S_c$, there is three-dimensional turbulence with a purely forward cascade, while for $S < S_c$, an inverse cascade spontaneously emerges. Similar transitions have been found as a function of Rossby number Ro when rotation is added, [4,5]. The inverse cascade leads to a growth of total energy at large scales. Even in the absence of large scale dissipation mechanism this process saturates at late times leading to the formation of a condensate. In two-dimensional turbulence, the turbulent condensate is well understood, [6], but in the case of thin three-dimensional layers the behaviour of the condensate phase has not yet been investigated.

In this work we study turbulence in thin layers in the condensate state using a large number of direct numerical simulations varying all parameters of the system. We investigate the energy budget in large and small scales as a function of Re, S and the aspect ratio A. It is shown that in a range of $S < S_c$, an effective eddy viscosity-type spectrally non-local transfer of energy is responsible for the saturation of the condensate. For even smaller S, the flow is entirely two-dimensionalised and the inverse cascade is balanced by viscosity. Furthermore, close to the transition $S \approx S_c$ we observe complex bi-stable and hysteretical behaviour close and follow the hysteresis curve of the system.

Références

- 1. Smith, Leslie M., Jeffrey R. Chasnov, and Fabian Waleffe. "Crossover from two-to three-dimensional turbulence." Physical Review Letters 77.12 (1996) : 2467.
- Benavides, Santiago J., Alexakis, Alexandros "Critical Transitions in Thin Layer Turbulence" J. Fluid Mech. 822, 364 (2017)
- Stefano Musacchio, Guido Boffetta. "Split energy cascade in turbulent thin fluid layers" Physics of Fluids 29, 111106 (2017)
- Celani, A., Musacchio, S., Vincenzi, D. "Turbulence in More than Two and Less than Three Dimensions". Physical Review Letters 104, 184506 (2010).
- 5. Deusebio, Enrico, et al. "Dimensional transition in rotating turbulence." Physical Review E 90.2 (2014) : 023005.
- 6. Frishman, Anna, and Corentin Herbert. "Turbulence statistics in a 2D vortex condensate." arXiv preprint arXiv :1711.05536 (2017).