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Cracks in Thin Sheets: When Geometry Rules the Fracture Path
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We study the propagation of brittle fractures coupled to large out-of-plane bending, as when a brittle
elastic thin sheet is cut by a moving object. Taking into account the separation of the film’s bending and
stretching energies and using fracture theory we show that such cracks propagate according to a simple set
of geometrical rules in the limit of small thickness. In particular, this provides some insight into the
geometrical origin of the oscillatory fracture patterns reported in two recent experiments. Numerical
integration of our geometrical rules accurately reproduces both the shape of the fracture pattern and the
detailed time evolution of the propagation of the crack tip, for various geometries of the cutting object.
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A fascinating problem in fracture theory concerns the
prediction of the crack path and the associated instabilities:
when a piece of material breaks, what determines the shape
of the resulting pieces? Within the physics community,
there has been a recent upsurge of interest in this question.
For example, an oscillatory instability occurs in quasistatic
propagation of cracks in thermally quenched strips of
silicon and glass [1]. This simple experimental system
has stimulated a number of theoretical and numerical
studies [2]. Another instability has been observed when a
biaxially strained thin rubber sheet is pierced and the crack
propagates dynamically [3], the underlying mechanisms of
which remains unclear.

In this Letter we perform an analysis of cracks propagat-
ing in thin elastic films. Previous studies of cracks in thin
plates were concerned with the ductile limit [4], which is
relevant in the engineering context of ship plating due to
cutting, tearing or bending during collision or grounding
[5]. Here, we focus on the opposite limit of brittle thin
films. This limit is relevant for the analysis of a novel type
of crack instability that has recently been reported by two
independent studies [6,7].

In these experiments, a rigid object, the cutting tool is
forced through a thin polymer film and tears through the
material as it advances; see Fig. 1. The tool is oriented
perpendicularly to the film. The film is clamped at its
lateral boundaries which impose no initial tension and is
driven parallel to its major length. The thin film is brittle,
hence it undergoes negligible irreversible deformation be-
sides fracture. For tools much wider than the film’s thick-
ness, the crack tip T follows a highly reproducible
nonsinusoidal oscillatory path. Each single period of this
path consists of two smooth curves separated by a kink, at
which there is a sharp change in the direction of curvature.
Propagation is primarily quasistatic, at a speed comparable
to that of the cutting tool v, but is interrupted by periodic
bursts of dynamic propagation immediately after each
kink. By decreasing the size of the cutting tool down to
widths comparable to the film thickness, the crack path

eventually becomes straight, as reported in [6,7], but here
we focus on the oscillatory behavior far above threshold.
The film thickness h is therefore much smaller than any
other dimension in the system. In this regime, the crack
morphology is independent of v (as long as this remains
much smaller than the speed of sound in the material), h
(provided that h ! w), and the film’s width D. The only
relevant length scale in the problem is the width of the
cutting tool, w, with which both the pattern’s amplitude, A,
and wavelength, !, have been found to scale linearly [6].

This simple experimental scaling law, together with the
robustness of this instability, suggests that a simple under-
lying mechanism is at stake. Ghatak and Mahadevan [7]
have proposed a simple picture of the experimental pat-
terns, assuming that the crack tip moves along the tool’s
circumference at a constant velocity with alternating di-
rection. However, this description only crudely mimics
what is observed in the experiments [8] and it is not based

(a) (b)
v

w
I

I
sheet

clamp

kink

λ

PP

A
D

x

y
z

φ

π
2

−− β
U

V

T L

FIG. 1. (a) Schematic of an oscillatory path P, obtained when
a cutting tool I, is driven at constant velocity v, through a thin
polymer film clamped at two of its lateral boundaries [6]. ! and
A are the wavelength and amplitude of the pattern, respectively.
(b) Our 2D model divides the film into three regions: the soft
region (white) where the presence of the tool I is accommodated
by mere bending of the film, the active region "TVU# (dark gray)
where the elastic energy is stored and the outer region (light
gray).
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spiral rðθÞ ∝ expðσθÞ, where σ is a constant that deter-
mines the spiral’s rate of growth. This convergence is more
efficient for large n’s, and for n ¼ 1 it takes roughly
three quarters of a turn to reach the exponential behavior
[10] [Fig. 2(a)]. A logarithmic spiral is characterized by a
constant polar tangential angle, whose complement, ψ , is
known as the spiral pitch and obeys σ ¼ tanψ . In experi-
ments, the spiral growth rate σ and the pitch increase with
the number of cracks n [see Fig. 4(a)].
We first consider the pushing configuration. The cone

acts in the plane of the sheet as an expanding disk that
forces the film radially outwards. This configuration is a
polar version of the straight cutting of a sheet with a
blunt tool in which an oscillatory crack is observed [20].
A central area of the sheet (Fig. 1) is divided into n flaps
which are free to bend away: this region is the convex hull
of the reunion of all crack paths. In the case of radial
propagation, this is a n polygon whose vertices are the n
crack tips, and whose edges are lines around which the
flaps strongly bend out of plane. The spiral case (Fig. 3)
is more complex, as the boundary of the convex hull
involves bending lines and portions of the cuts: the bending
boundary originating from the crack tip A connects
tangentially to the neighboring cut (in red) at point T.
This line is broken into an angle αc by the lateral force
applied by the cone at contact point P [Fig. 3(d)].
Spiral paths in a zero elasticity model.—We assume in

a first approximation [18] that the sheet is infinitely

bendable and that fracture propagates before any notice-
able in-plane strain builds up (see the below discussion
of validity of this assumption). In this limit, the bending
line remains straight (viz. αc ¼ 0, and points A, P, T are
aligned), and the convex hull must always encompass the
expanding disk [Fig. 3(e)] by continuous propagation of
the cracks.
To determine the direction of propagation of the crack tip

when the radius ρ of the expanding disk increases by dρ,
we invoke the maximum energy release rate criterion [21].
Assuming no friction, and because the inextensible,
infinitely bendable sheet may not store elastic energy,
the work of the operator is in this model entirely dissipated
in fracture energy and
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FIG. 2. Semilog plot of the n spiral crack paths in 30 μm thick
sheets for (a) pushing and (b) pulling. The n rotated branches of
the n spiral almost superpose in this graph. Straight lines evidence
the exponential behavior.
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FIG. 3. Geometry of spiraling crack paths. (a) Perforation with
a cone from a three-notch initial condition (inset), forms a three-
spiral pattern (crack paths and “bending lines,” respectively, in
color and dashed lines). (b),(c) Sequence of crack propagation
(A to A0): contact point with the cone (arrowhead) moves from P
to P0, and the tangency point from T to T 0. (d) Elements of spiral
tearing: the cone stretches the bending line APT until the crack at
A starts to move. (e) Zero elasticity approximation: the bending
line AT is straight, and the yellow crack path is the involute of the
developed red crack path.

FIG. 1. Scanned crack paths obtained for n ¼ 1 to 5 initial radial notches (sheet thickness 30 μm). Upper and lower rows correspond
respectively to the pushing (2γ is the opening angle of the cone) and pulling configurations (shown are n ¼ 4 initial radial notches).
In the pulling case for n ¼ 4, spirals are obtained if notches are S shaped. Horizontal bars in each subfigure are 5 cm long.
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FIG. 3. Geometry of spiraling crack paths. (a) Perforation with
a cone from a three-notch initial condition (inset), forms a three-
spiral pattern (crack paths and “bending lines,” respectively, in
color and dashed lines). (b),(c) Sequence of crack propagation
(A to A0): contact point with the cone (arrowhead) moves from P
to P0, and the tangency point from T to T 0. (d) Elements of spiral
tearing: the cone stretches the bending line APT until the crack at
A starts to move. (e) Zero elasticity approximation: the bending
line AT is straight, and the yellow crack path is the involute of the
developed red crack path.

FIG. 1. Scanned crack paths obtained for n ¼ 1 to 5 initial radial notches (sheet thickness 30 μm). Upper and lower rows correspond
respectively to the pushing (2γ is the opening angle of the cone) and pulling configurations (shown are n ¼ 4 initial radial notches).
In the pulling case for n ¼ 4, spirals are obtained if notches are S shaped. Horizontal bars in each subfigure are 5 cm long.
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Why is straight propagation unstable?




