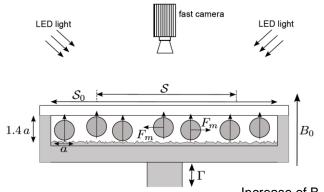
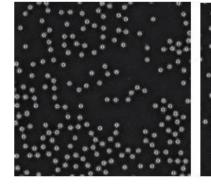
Random waves in a vibrated 2D granular medium with magnetic dipolar interactions.


MSC: Laboratoire Matière et Systèmes Complexes UMR 7057 CNRS / Université Paris Diderot

Michael Berhanu (CR CNRS, MSC), with

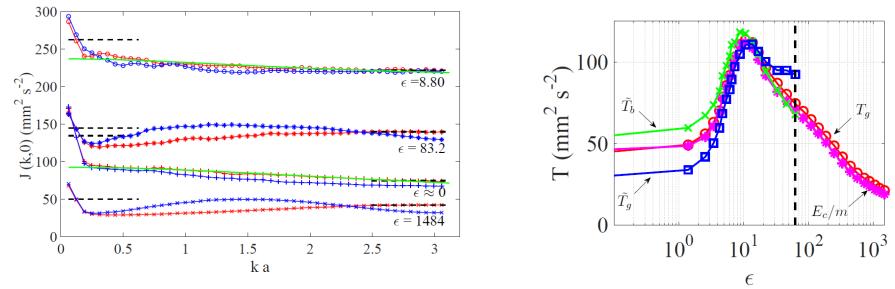
Simon Merminod (Phd defended at MSC /10/2016, now post-doc at Brandeis University, USA)


Eric Falcon (DR CNRS, MSC)

Gustavo Castillo (Assistant Professor, Univ. O'Higgins, Chile)

Increase of B₀ at a given shaking strength

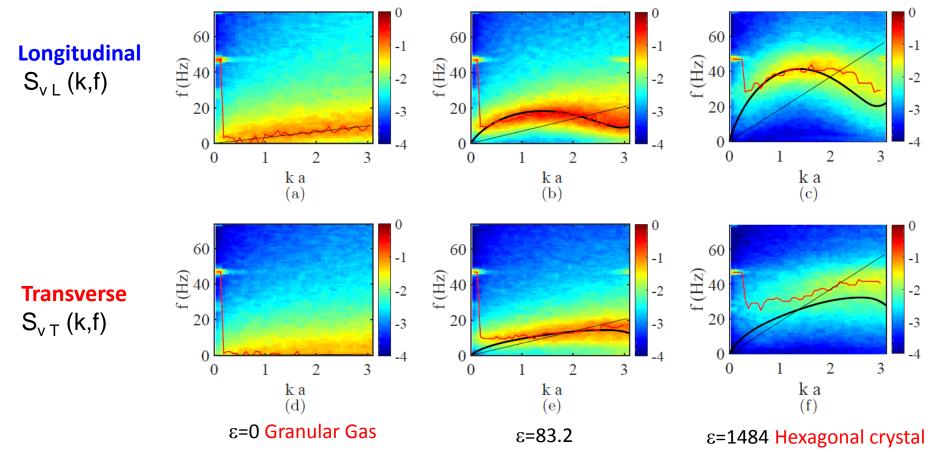
<u>Acknowledgements :</u> Thierry Hocquet (MSC) & Martin Devaud (MSC)


Dissipative granular gas $\epsilon = E_m/E_c \approx 0$ Quasi-elastic collisionles gas $\epsilon = E_m/E_c = 16.2$ Hexagonal crystal

 $\epsilon = E_m / E_c = 283$

Spatial velocity correlations studied in Fourier space

• Computation of longitudinal and transverse current correlation function: $J_L(k,t)$ and $J_T(k,t)$. Granular temperature T, Ec/m. Deviation from kinetic energy equipartition to quantify the distance to thermal equilibrium.



• According to fluctuating hydrodynamics theory (Puglisi et al. J. Chem Phys. 2012), for a granular, granular temperature at the grain scale is smaller than the large scale temperature (bath temperature).

In our experiment, $T_b > T_g$ in the dissipative granular phase and $T_b = T_g$ in the quasielastic regime, maximum of the curve T vs ε .

Space-time spectra: dispersion relation of random waves

• Computation of space-time velocity spectra Sv (k,f) for longitunal and transverse fluctuations.

- No transverse waves in the granular gas phase.
- In the hexagonal crystal phase, dispersion relations are well reproduced by points dipole model with harmonic approximation (Golden et al. PRE 2010).