How does a drop solidify when spreading on a cold substrate ?

<u>R. de Ruiter ^a, P. Colinet ^b, P. Brunet ^c, L. Royon ^c, J.H. Snoeijer ^a, H. Gelderblom ^a</u>

^a Physics of Fluids Group, Faculty of Science and Technology, MESA+ Inst. for Nanotechnology, University of Twente, Enschede, The Netherlands
^b Transfers, Interfaces and Processes, Université Libre de Bruxelles, Brussels, Belgium
^c Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France

Experimental setup & conditions

Liquid : hexadecane (no subcooling, $T_f = 18^{\circ}C$) - Simple spreading (We<<1) perfect wetting $\theta = 0$)

TABLE I.	Properties	of the	liquid,	solid,	and	substrate.
----------	------------	--------	---------	--------	-----	------------

	Liquid $(i = l)$	iquid $(i = l)$ Solid $(i = s)$ Substr		ate $(i = sub)$	
	Hexadecane	Hexadecane	Copper	Soda-lime glass	
Viscosity μ (Pa s)	0.003				
Surface tension σ (N/m)	0.028				
Density ρ_i (kg/m ³)	774	833	8960	2479	
Specific heat capacity c_i (J/(kg K))	2310	1800	386	760	
Thermal diffusivity α_i (m ² /s)	8.4*10-8	$1.0*10^{-7}$	1.2*10-4	5.3*10-7	
Thermal conductivity k_i (W/(m K))	0.15	0.15	397.7	1.0	
Latent heat L (J/kg)	2.3*10 ⁵				
Freezing temperature T_f (°C)	18				

First millisecond

Typical sequence ...

Typical sequence ...

First millisecond

Last 20 ms

Spreading dynamics : results

Two regimes of spreading :

Early time : $\frac{r}{R_0} \sim \left(\frac{t}{\tau_c}\right)^{\frac{1}{2}}$ balance between inertia and capillarity

$$o\left(\frac{dr}{dt}\right)^2 \sim \frac{\gamma R_0}{r^2}$$

Surprising facts :

The drop can spread on a substrate where T₀ < T_m ! Very weak dependence on injected liquid temperature !

Kinetic undercooling : $T_f - T_{front} = v_{front}/\kappa$

Main fact : temperature is minimal at CL ! $T_{cl} = T_{cl,a} = T_f - v_{cl,a}/\kappa$

Kinetic undercooling : $T_f - T_{front} = v_{front}/\kappa$

Main fact : temperature is minimal at CL ! $T_{cl} = T_{cl,a} = T_f - v_{cl,a}/\kappa$ In the inertia-capillary regime : $v_{cl} = (R_0/2\tau_c)/(r/R_0)$

$$\rightarrow$$
 $r_a/R_0 = R_0/(2\tau_c\kappa\Delta T) \propto \Delta T^{-1}$

