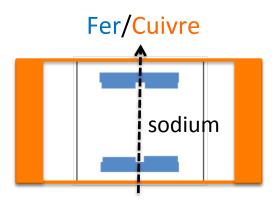
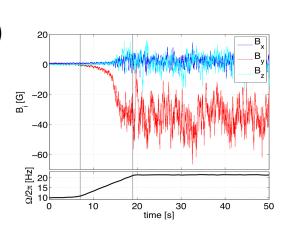
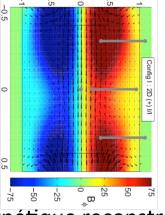

Caroline Nore

D. Castanon Quiroz , L. Cappanera & J.-L. Guermond




Simulations numériques de la dynamo dipolaire axisymétrique de l'expérience de Von-Kármán-Sodium


- ✓ Effet dynamo = génération de champ magnétique par mouvement turbulent de métal liquide
- ✓ Observé dans expérience VKS en 2007 avec des turbines en fer, couche de sodium autour, dans conteneur en cuivre
 - Champ magnétique dominé par un dipôle axial et une composante azimutale près des turbines

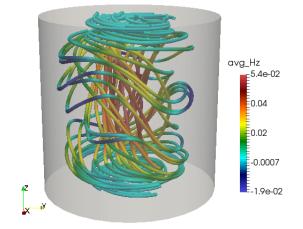
150 litres de sodium liquide à 120°C entraînés par turbines en fer (TM73)


 $f_1=f_2>16$ Hz, dynamo!

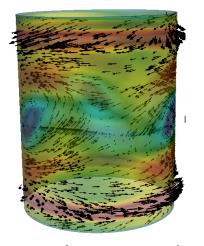
Champ magnétique reconstruit **B**(m=0) (cf. Boisson *et al.*, 2012)

Résultats

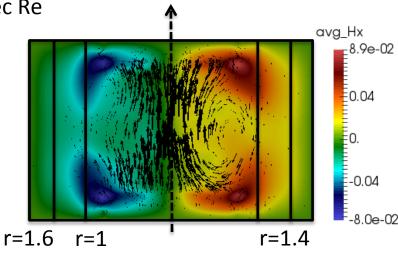
Écoulement turbulent à Re=10⁵ (LES et pseudo-pénalisation)



Magnétohydrodynamique (**U** et $\mathbf{B} = \mu_0 \mu \mathbf{H}$) à Re=10⁵, Rm=10² et μ =50


rot(**U**) instantané

- ✓ Hydrodynamique correcte
- ✓ Seuil dynamo décroît avec μ pour $1 \le \mu \le 50$



✓ Seuil dynamo décroît avec Re pour 500 ≤ Re ≤ 10⁵

 ✓ H calculé similaire à celui mesuré
(cf. Nore et al., EPL 2016)

U moyenné en temps (m=3, cf. Cortet *et al.*, 2009)

H moyenné en temps