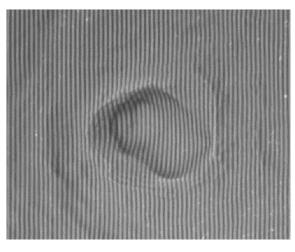
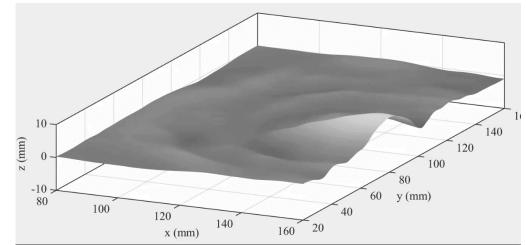
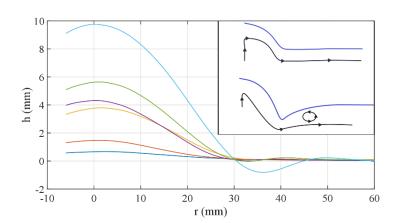

Ondes de surface produites par un jet turbulent immergé

Annette Cazaubiel, Éric Falcon et Michaël Berhanu Université Paris Diderot, MSC, ENS Paris, CNRS, Paris France


Dispositif expérimental


Paramètres de contrôle de l'expérience :

- Hauteur d'eau dans la cuve H
- Débit d'injection Q
- Diamètre d'injection d


Ecoulement mesuré par PIV

Déformation de la surface $\eta(x, y, t)$ par le jet mesurée par profilométrie par transformée de Fourier (FTP)


Cloche et ressaut

Profil moyen de la surface pour différents Q

- ➤ Formation d'une « cloche » de hauteur h, de diamètre D au point d'impact
- Formation d'un creux ou ressaut pour un forçage suffisant autour de la cloche

Génération d'ondes de surface

Spectre spatio-temporel $S_{\eta}(k_x, k_y = 0, f)$ loin du centre

Relation de dispersion :

$$\omega = \sqrt{gk + \frac{\gamma k^3}{\rho}} + \vec{v}.\vec{k}$$

En rouge : $\vec{v} = 0$ (relation classique)

En blanc : $v_x = 0.14$ m/s (valeur expérimentale mesurée par PIV)

- Maximum à la fréquence $f_c \approx 3 \text{ Hz}$
- → Fluctuations à grande échelle de la cloche = source des ondes
- \rightarrow f_c fréquence de forçage des ondes