

Numerical investigation into the choice of gait parameters in 2D anguilliform swimmers

David Gross^{1,2}, Yann Roux¹, Médéric Argentina² K-Epsilon, Institut non linéare de Nice

- Swimmers exhibit a range of body lengths, L, swimming frequency, $\boldsymbol{\omega}$ and tail beat amplitude, A
- A scaling law of Re ~ $Sw^{4/3}$ where $Sw = LA\omega/v$ is observed for the laminar regime
- Anguilliform swimming studied numerically in the laminar regime with two approaches to replicate Re –Sw relation
- Varied tail amplitude and wavelength varied

- Re-Sw relation replicated when Blasius boundary layer force added to panel method
- RANS somewhat over predicts power while neglecting viscous drag leads to a linear Re-Sw relation as seen for the turbulent regime
- Normalized velocity decreases linearly with increased tail amplitude → additional speed is being achieved less efficiently
- A peak in normalized velocity is found for wavelengths around 1.3 L

Influence of tail amplitude on normalized velocity

Swimming number versus Reynolds number in laminar regime

Influence of wavelength on normalized velocity