Turbulent bands in a planar shear flow without walls

Matthew Chantry¹, Laurette S. Tuckerman ¹ & Dwight Barkley ²

¹PMMH, (UMR 7637 CNRS - ESPCI), Paris, France

²Mathematics Institute, University of Warwick, Coventry, UK

matthew.chantry@espci.fr

Regular patterns of turbulent and laminar flow are a robust feature found at transitional Reynolds numbers. Studied first in Taylor-Couette flow [2,4] (but also in plane Couette flow [5] and plane Poiseuille flow [6]) these patterns are not aligned with the shear direction but tilted into the spanwise direction. Bands have been computationally studied in minimal domains which are tilted with an angle θ against the streamwise direction to align with the pattern and thereby require a computational domain with only a single large dimension, denoted z, which is aligned with the wavevector of the pattern [7,8]. Averaging over time and the band-aligned direction, which we denote by x, reveals coherent structures of rolls and streaks which are maintained by time-dependent Reynolds stresses. It has been proposed that the bands emerge in a linear instability from the time averaged uniform turbulence [7]. Attempts to model this behaviour have thus far been limited and not found the success of modelling localized turbulence in pipe flow [1]. There still remains much work to understand the mechanisms involved in maintaining these patterns which motivates this work.

To understand the mechanisms involved in turbulence in small domains, Waleffe [10] studied the sinusoidal shear flow created by a sinusoidal body forcing with periodic boundary conditions in (x, z) and stress-free conditions at $y = \pm 1$, where y is the "wall"-normal direction. The Reynolds number is defined using the same non-dimensionalization as plane Couette flow. This forcing invokes a laminar flow $U(y) = \sin(\frac{\pi}{2}y)$, which is linearly stable [9]. This flow is clearly related to Kolmogorov flow, however the imposition of stress-free boundary conditions removes the instabilities associated with that flow.

To study bands in this flow we use ChannelFlow [3] to simulate a domain tilted at $\theta = 24^{\circ}$ and of size $L_x \times L_y \times L_z = 10 \times 2 \times 40$, which matches those used in studies of Couette and Poiseuille flow [7,8]. We find turbulent bands over a wide range of Reynolds numbers $Re \in [125, 350]$. These bands qualitatively match those found in plane Couette flow but differ in the near-wall regions due to the differing boundary conditions. In Waleffe flow, the sinusoidal laminar flow and stress-free boundary conditions induce dynamics which can be captured with a small number of Fourier modes in the "wall"-normal direction. Utilizing this and motivated by Waleffe's self-sustaining process [10] we attempt to model the development of bands from the time-averaged uniform turbulent state found at higher Reynolds numbers.

References

- 1. D Barkley. Simplifying the complexity of pipe flow. Physical Review E, 84:016309, 2011.
- 2. D Coles. Transition in circular Couette flow. Journal of Fluid Mechanics, 21(03):385-425, 1965.
- 3. J F Gibson. Channelflow: A spectral Navier-Stokes simulator in C++. Technical report, U. New Hampshire, 2014. Channelflow.org.
- 4. A Meseguer, F Mellibovsky, M Avila, and F Marques. Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow. *Physical Review E*, 80(4):046315, 2009.
- 5. A Prigent, G Grégoire, H Chaté, and O Dauchot. Long-wavelength modulation of turbulent shear flows. *Physica D*, 174(1):100–113, 2003.
- 6. T Tsukahara. DNS of turbulent channel flow at very low Reynolds numbers. arXiv:1406.0248, 2014.
- 7. L S Tuckerman and D Barkley. Patterns and dynamics in transitional plane Couette flow. *Physics of Fluids*, 23(4):041301, 2011.
- 8. L S Tuckerman, T Kreilos, H Schrobsdorff, T M Schneider, and J F Gibson. Turbulent-laminar patterns in plane Poiseuille flow. *Physics of Fluids*, 26(11):114103, 2014.
- 9. F Waleffe. WHOI GFD 2011 lecture 4. http://www.math.wisc.edu/ waleffe/GFD2011lectures/GFD4.pdf.
- 10. F Waleffe. On a self-sustaining process in shear flows. Physics of Fluids, 9(4):883-900, 1997.