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• Turbulence can create Self-organized flows such as zonal flows 



 … Jupiter, Saturn, Earth’s jet streams, etc  



!

• “Zonal flows” suppress Turbulence     


 … Critical for Magnetic Fusion 


!

Turbulence create self-organized flows

[ Lin et al, Science, 1998]



- Agree with theoretical prediction


- “Disparate” scale interactions dominate “Local” interactions 


- Dynamical spectra (instead of Kolmogorov-type static 

spectra) 

!
Gyrokinetic Spectra in Zpinch system 

(a) (b)

Zonal flows create characteristic spectra



Predator-Prey dynamics between 
turbulence and zonal flows

Can be fitted with simple Predator-Prey model

Predator-Prey Interactions of Gyrokinetic Turbulence

Sumire Kobayashi,1, ⇤ Özgur D. Gürcan,1, † and Patrick H. Diamond2, ‡

1
Laboratoire de Physique des Plasmas, CNRS, Paris-Sud,

Ecole Polytechnique, UMR7648, F-91128 Palaiseau, France

2
University of California SanDiego, La Jolla, CA 92093-0319, USA

The interaction dynamics between spontaneously formed zonal flows and small-scale turbulence
in nonlinear gyrokinetic simulations is explored in a closed fieldline geometry. We find that i) the
turbulent dynamics can be well-captured by a simple (Lotka-Volterra type) predator-prey model,
ii) the effective growth rates of turbulence (prey species) coincides with the zonal-flow-modified
primary mode growth rates, qualitatively and quantitatively supporting a hypothesis of primary
mode reduction by zonal flows, and iii) the effective damping of zonal flows (predator) can be as
large as the collisional damping, suggesting a possibly non-negligible role played by the Kelvin-
Helmholtz (KH)-like instability in dissipating zonal flows to regulate preditar-prey dynamics.

The previous work demonstrated that gyrokinetic sim-
ulations of closed fieldline Zpinch system display distinct
predator-prey dynamics between zonal flows and turbu-
lence, especially in the vicinity of the stability threshold
where quasi-dominant zonal flows exist [1]. Such rela-
tionship has shown for the electrostatic potential fluctu-
ations of zonal flows �

q

and non-zonal component �
k

(�
normalized to T0⇢i/eR). (Note that the particle flux is
in phase with non-zonal components.) It was also found
that the primary mode growth rates of gyrokinetic sim-
ulations become suppressed in the presence zonal flows.

Here we explore such predator-prey relationship in gy-
rokinetic potential vorticites � (which can be interpreted
roughly as the energy) in order to compare the results
with simple preditar-prey model. As shown in Fig. 1,
the result exhibits almost identical predator-prey behav-
ior (as with �) between the potential vorticity of non-
zonal components, N =

P
k

|�
k

|2(1 + k2), and for zonal

flows, E
v

= |�
q

|2q2 where q is the zonal flow wavenumber.
When collisionality ⌫ ( normalized to ⌫

phys

= ⌫
p
2v

thi

/R
) is lowered by half, the frequency of predator-prey dy-
namics becomes about half as in Fig. 3, which is usually
accompanied by the further suppression of turbulence.

Subsequently, the following Lotka Volterra equations,
which describe one of the simplest predator-prey dynam-
ics, is applied to fit the gyrokinetic simulation results.
The model can be written as
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where � is the linear growth rate of prey species, ↵ and
� are the shearing efficiency for turbulence and zonal
flows respectively, �! the nonlinear decorrelation rate,
�
F

the zonal flow damping rate, and �
nl

is the nonlinear
damping characteristics of the model. (The prey species
has an internal growth � as well as nonlinear damping
/ ↵ (due to “eddy” diffusion), while the predator species
has linear damping �

z

but nonlinear growth / � which
is proportional to the population of the prey.)

As shown in Fig. 2 and Fig. 4, the interaction dy-
namics of the gyrokinetic simulations can be captured
reasonably well with the simple predator-prey equations.
The each parameter for the model can be estimated by
fitting the model to the gyrokinetic simulations by the
method of least squares, and one finds that �

lin

= 0.054,
�
F

= 0.0027, c1 = 0.080, and c2 = 0.012 for ⌫ = 0.01.
When the collisionality is reduced by half (⌫ = 0.005) the
parameter becomes � = 0.060, �

F

= 0.0011, c1 = 0.064,
and c2 = 0.011. We find that the nonlinear damping
term / �

nl

for the predator species and �! for the prey
species are not necessary for a minimal model.

The result also demonstrates that the effective lin-
ear growth rates of prey species estimated by the sim-
ple predator-prey model �

lin

⇠ 0.05 � 0.06 is in reason-
able agreement with the gyrokinetic linear growth rate
�
gk

⇠ 0.05 (shown in Fig. 5) in the presence of zonal
flows at saturation level .

We also finds that the zonal flow damping rates esti-
mated by the model roughly coincide with the relevant
gyrokinetic collisionalities. Since the collisionality ap-
plied in gyrokinetic simulations has the form �

F

⇠ �
z

q2,
we can compare directly the gyrokinetic collisionality ⌫
and zonal flow damping rate estimated by the model
�
z

by approximating q to be the dominant zonal flow
mode. For the higher collisionality case ⌫ = 0.01 (where
q = 0.5), one finds �

z

⇠ 0.011, and for lower collisinality
⌫ = 0.005 (where q = 0.5), �

z

⇠ 0.0044. This sug-
gests the possible role played by the Kelvin-Helmholtz
(KH)-like instability, with equal or smaller level than the
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