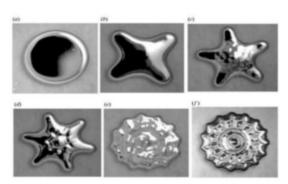
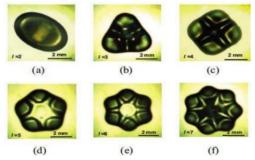


RADIALLY FORCED LIQUID DROPS


A. Ebo Adou^{1,2}, L. S. Tuckerman¹, J. Chergui², S. Shin³, D. Juric²

 $^1\mathrm{PMMH}$ (UMR 7636 CNRS-ESPCI-UPMC Paris 6-UPD Paris
7), 10 rue Vauquelin, 75005 Paris, France $^2\mathrm{LIMSI\text{-}CNRS},$ Bât 508, rue John von Neumann - 91405 Orsay, France

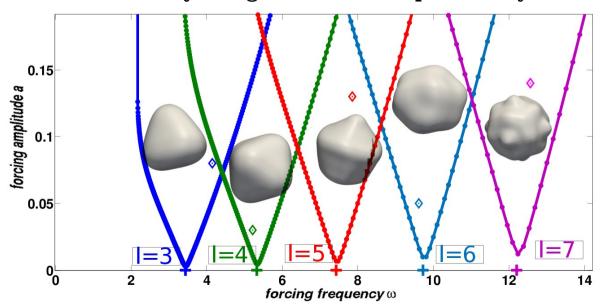
³Department of Mechanical and System Design Engineering, Hongik University, Seoul, 121-791 Korea



$Magnetically\ oscillated\ quicksilver\ drops$

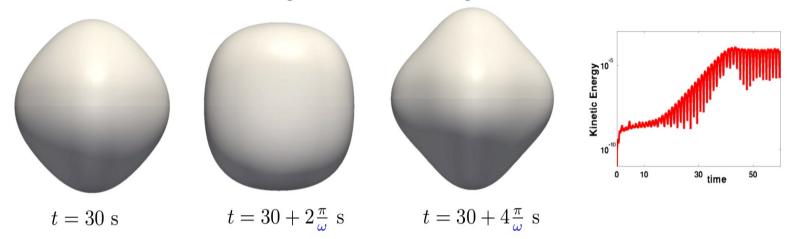
From Fautrelle *et al.* J. Fluid Mech. 527, (2005) 285-301.

$A constically\ levitated\ water\ drops$


From Shen et al. Phys. Rev. E 81, (2010) 046305.

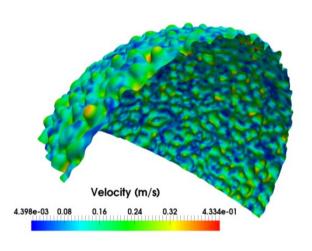
Equations of motion

$$\begin{cases} \rho \left[\partial_t + (\mathbf{U} \cdot \nabla) \right] \mathbf{U} = -\nabla P + \eta \nabla^2 \mathbf{U} - \rho G \vec{e}_r \\ \nabla \cdot \mathbf{U} = 0 \end{cases}$$


where the radial forcing is given by $G(r,t) = (q - a\cos(\omega t))$

Linear Stability Analysis gives: Instability tongues from Floquet analysis

FULL NONLINEAR 3D NUMERICAL SIMULATION WITH BLUE


Faraday Instability for $\ell = 4$

Preliminary results for the Rayleigh-Taylor problem

Forcing parameters: $g = 90 \text{m.s}^{-2} \& \Delta \rho = 1940 \text{Kg.m}^{-3} \& R = 0.04 \text{m } \& \sigma = 2.10^{-2} \text{N.m}^{-1}$.

