Hamiltonian approach of gyrokinetics

Aix*Marseille université Loïc de Guillebon

Centre de Physique théorique, Marseille

Plasma dynamics:

$$\frac{\partial}{\partial t} f(\boldsymbol{q}, \boldsymbol{p}) = -\frac{\boldsymbol{p}}{m} \cdot \nabla f - e\left(\boldsymbol{E} + \frac{\boldsymbol{p}}{m} \times \boldsymbol{B}\right) \cdot \frac{\partial}{\partial \boldsymbol{p}} f \quad \text{and } (\mathbf{E}, \mathbf{B}) \text{ evolve through Maxwell}$$

6 dim. \Rightarrow need for a reduction

Gyrokinetics:

- Vlasov characterictics = particle trajectories
- *Magnetic moment* μ is conserved
- Fast gyroangle θ has only averaged effects
- Particle position **q** replaced by guiding-center **X**

$$f(\mathbf{q},\mathbf{p}) = F_{\mu}(\mathbf{q},\mathbf{p}_{\parallel},\mathbf{\phi})$$

Problems:

 \rightarrow X and θ not intrinsic ! \rightarrow Hamiltonian structure lost ?

Need for an intrinsic approach