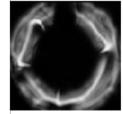
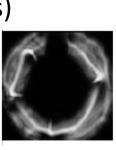


Etude numérique de la convection d'un liquide diélectrique sous l'effet de la force diélectrophorétique en géométrie annulaire

O. Crumeyrolle^{1,a}, H. Yoshikawa¹, S. Malik¹, M. Smieszek¹, Ch. Egbers², & I. Mutabazi¹

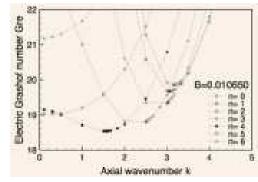
- ¹ LOMC, UMR 6294, CNRS-Université du Havre, BP 540, F-76058 Le Havre cedex
- ² LAS, Brandenburg Technical University, Siemens-Halske-Ring 14, D-03046 Cottbus, Germany
- ^a olivier.crumevrolle@univ-lehavre.fr

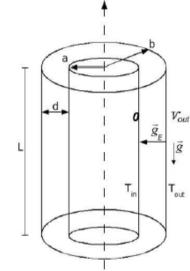

Force diélectrophorétique: g_F , convection « artificielle » en apesanteur.

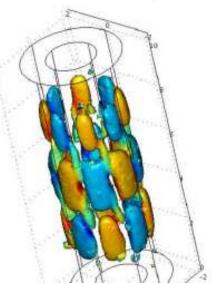

$$\frac{\vec{f}_E}{\rho} = \vec{g}_E = \frac{\varepsilon_1}{2\rho_0} \frac{e}{\alpha} \vec{\nabla} (E^2)$$

En géométrie annulaire :

- M. Takashima, (1980): rouleaux (axisymétriques)
- Sitte et al. (2001): motif non-axisymétrique.

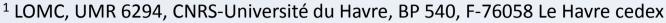






- Nous avons entrepris l'étude de stabilité linéaire sans hypothèse d'axisymétrie
- 1D, 3D : mode critique = hélices

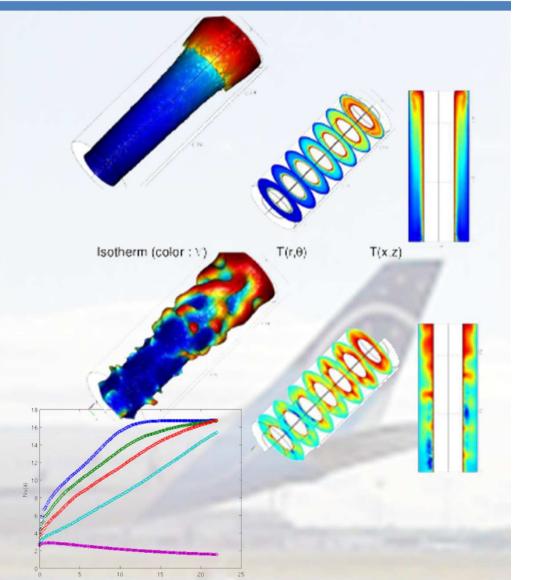
$$-$$
 ex: $n = 4$



Etude numérique de la convection d'un liquide diélectrique sous l'effet de la force diélectrophorétique en géométrie annulaire

O. Crumeyrolle^{1,a}, H. Yoshikawa¹, S. Malik¹, M. Smieszek¹, Ch. Egbers², & I. Mutabazi¹

^a olivier.crumeyrolle@univ-lehavre.fr



• Étude DNS (f.e.m., COMSOL v3.5)

a/b = 0.5, L/(b-a) = 10, huile silicone : manip. LAS, au sol et en vol parabolique

- 22 s de microgravité ($\ll \tau_{\kappa}$)
- C.I.: convection en hyper-gravité.
- Structure en hélice peu visible, développement de panaches localisés
- Fort Nu au cylindre intérieur (g_E plus élevée), jusqu'à 17,5 pour Ra_E = 9308

