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Abstract. Biochemical reaction networks are subjected to large fluctuations due to small molecule numbers,
yet underlie reliable biological functions. Most theoretical approaches describe them as purely deterministic or
stochastic dynamical systems, depending on which point of view is favored. Here, we investigate the dynamics of a
self-repressing gene using an intermediate approach based on a moment expansion of the master equation, taking
into account the binary character of gene activity. We thereby obtain deterministic equations which describe
how nonlinearity feeds back fluctuations into the mean-field equations, providing insight into the interplay of
determinism and stochasticity. This allows us to identify a region of parameter space where fluctuations induce
relatively regular oscillations.

The simplest gene regulatory network is formed by a single gene which is regulated by its own protein.
In the case of negative feedback (the gene is repressed by the protein), it serves as a paradigmatic
genetic oscillator, which has for example been proposed as a model for the somite clock [1]. Accordingly,
its dynamics has been actively investigated throughout mathematical biology [2,3,4,5,6,7,8,9]. The self-
repressing gene reaction network involves four chemical species : the free gene G, RNA M , protein P and
the DNA-protein complex GP . These molecular actors interact via the following biochemical reactions :

G + P
α
−⇀↽−

θ
GP ; G

λ
−→ G + M

GP
µ
−→ GP + M ; M

β
−→ M + P

M
δM−−→ ∅ ; P

δP−−→ ∅

(1)

Parameter α (resp., θ) is the DNA-protein binding (resp., unbinding) rate, δm (resp., δp) is the linear
mRNA (resp., protein) degradation rate, λ (µ) is the transcription rate of unbound (resp., bound) gene
and β is the translation rate.

Besides its biological significance, the self-regulating gene is interesting from a mathematical view-
point because it combines two qualitatively different types of variables. On the one hand, proteins and
RNAs may be present in high copy numbers, and can therefore be described by macroscopic variables
in the large volume limit. On the other hand, the gene, which is a DNA fragment, is a single molecule.
We assume that it can only be in two distinct states, bound or unbound, and therefore must be des-
cribed mathematically by a binary variable. In most theoretical treatments, the difficulty of including
this binary variable is circumvented by assuming that fluctuations of the gene state are fast compared
to transcription, translation, and degradation. Under this aproximation, the binary gene state gene is
replaced by a continuous variable which is the average occupancy time.

To explore the rich dynamics induced by fluctuations associated to gene state switching, a stochastic
treatment is needed. A key point is that fluctuations interact with nonlinearities and modify the mean-
field behavior, because averaging does not commute with evaluating a nonlinear function (the definition of
variance is the simplest example of this fact). In particular, fluctuations may destabilize a system towards
an oscillatory behavior. To capture the role of fluctuations in a simple setting, we study a model where
nonlinearity only occurs in the transcriptional regulation by a monomer, RNA and protein degradation
being linear. The most general probabilistic description of the chemical reaction network (1) is provided
via the chemical master equation. If Pg,m,p(t) denotes the probability to find a bound (resp., unbound)
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gene, represented by g = 0 (resp., g = 1), accompanied by m ARN and p protein copies at time t, its
time evolution is governed by the following master equation in the limit where θ/α is large and µ is zero :

d
dtPg,m,p = (−1)

g
[αpPg,m,p − θPg,m,p] + δg,1λ [P1,m−1,p − Pg,m,p] + βm [Pg,m,p−1 − Pg,m,p]

+δm [(m+ 1)Pg,m+1,p −m Pg,m,p] + δp [(p+ 1)Pg,m,p+1 − pPg,m,p] .
(2)

The asymptotic probability distribution satisfying (2) has been widely investigated [10,11] but gives only
a static picture of the dynamics, averaged over time. To better understand the influence of stochastic
fluctuations on the temporal dynamics of the self-repressing gene, we reformulate the master equation as
an infinite hierarchy of coupled differential equations whose variables are the joint cumulants of random
variables g, m and p. To be specific, the first-order and second-order joint cumulants of random variables
x and y are the averages and the covariances

〈x〉 =
∑

g,m,p

xPg,m,p; ∆x,y = 〈xy〉 − 〈x〉 〈y〉 ,

while the third-order joint cumulants are defined by

Kx,y,z = 〈xyz〉 − 〈x〉 〈y〉 〈z〉 − 〈x〉∆y,z − 〈y〉∆x,z − 〈z〉∆x,y.

By rescaling parameters and joint cumulants according to

rt =
1
δm

; rg = 1; rm =
δpθ
βα rp =

θ
α ; Θ = rt θ; Λ = λ rt

rm
δ =

δp
δm
,

T = rt t; X = rx 〈x〉 ; ∆X,Y = rx ry∆x,y; KX,Y,Z = rx ry rzKx,y,z x, y, z ∈ {g,m, p};
(3)

the following normalized time evolution equations for averages and covariances are obtained :

d
dT P = δ (M − P ) ; d

dT∆P,P = 2δ (∆P,M −∆P,P ) ;

d
dTM = ΛG−M ; d

dT∆M,M = Λ [2∆G,M + µG]− 2∆M,M ;

d
dTG = Θ (1−G−GP −∆G,P ) ;

d
dT∆P,M = Λ∆G,P − (δ + 1)∆P,M + δ∆M,M ;

d
dT∆G,P = δ [∆G,M −∆G,P ]−Θ [KG,P,P +G∆P,P + (P + 1)∆G,P ]

d
dT∆G,M = ΛG (1−G)−∆G,M −Θ [KG,M,P +G∆P,M + (P + 1)∆G,M ] .

(4)

Since G is a binary variable, ∆G,G = G(1−G) and is slaved by G. Because of the nonlinearity, Eqs. (4)
do not form a closed system as the time derivatives of joint cumulants involve joint cumulants of higher
order. In particular, Eqs. (4) do not constrain the two third-order joint cumulants KG,M,P and KG,P,P

which are unspecified. As is well known, the simplest way to truncate the hierarchy of moment equations
is to set all second-order cumulants to zero [12]. This neglects all fluctuations and leads to deterministic
rate equations for the time averages. Here, these equations predict that only stable stationary states can
be observed in the system studied.

Incorporating fluctuations in the dynamics requires truncating the hierarchy at a higher order. As
a first approximation, it would seem natural to set third-order joint cumulants to zero, which amounts
to represent the stochastic variables by Gaussian probability distribution functions whose means and
variances vary with time and interact with each other. In our case, however, this is not necessarily a
correct approach because of the coexistence of macroscopic variables (g and p) interacting with a binary
(microscopic) variable (g). In the following, we consider two limiting cases depending on the value of the
gene response time.

In the first case, we assume that the unbinding and binding rates are very large compared to other
dynamical rates and keep their ratio constant (Θ → ∞, θ/α constant). The gene remains bound or un-
bound for very short amounts of time, during which mRNA and proteins copy numbers can be considered
as constant. RNA and protein levels keep a memory of many previous state switching cycles, and reach
a stationary state with an expected gaussian distribution. In this case the third-order cumulants KG,M,P
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and KG,P,P vanish so that Equations (4) become closed. In the limit where the overall transcription rate
is large (Λ≫ 1), the stationary state is given by

G∗ ≃ ∆∗
GY ≃ 1√

Λ

(
1 +

δ

2Θ (1 + δ)

)
; ∆∗

GX ≃ −1√
Λ

(
1 + 2

δ

Θ (1 + δ)

)
; (5a)

P ∗ ≃M∗ ≃ ∆∗
PP ≃ ∆∗

MP ≃ ∆∗
MM ≃

√
Λ

(
1 +

δ

2Θ (1 + δ)

)
. (5b)

where we include the correction to first order in Θ−1. An interesting finding is that this correction only
depends on the combination Θ(1 + δ)/δ. A linear stability analysis then indicates that the stationary
state is always stable, in agreement with the rate equation approximation.

Conversely, let us assume that the gene reacts infinitely slowly (Θ → 0). The dynamics is then
driven by the gene jumping between two states according to a Poisson process. When the gene is active
(GON = 1), protein and RNA levels quickly converge to high level states MON = PON = Λ. When the
gene is inactive, protein and RNA levels are low (MOFF = POFF = 0). At the end of an ON/OFF cycle,
the system is always in the same state, with no memory of previous cycles. Protein temporal profiles
feature a sequence of spikes, distributed in time according to a Poisson process.

In this limit case, averages, covariances and third-order joint cumulants can easily be derived thanks
to the high correlation between variables. The gene is active during a time tON = 1/(θΛ) and inactive
during a time tOFF = 1/θ so that its average activity is G∗ = tON/(tON + tOFF ) = 1/(1 + Λ) and
P ∗ =M∗ = G∗Λ. If the transcription rate is large (Λ≫ 1), the different variables scale according to :

G∗ ≃ Λ−1; P ∗ =M∗ = ∆∗
G,P = ∆∗

G,M ≃ 1; ∆∗
P,P = ∆∗

M,M = ∆∗
P,M = K∗

G,P,P = K∗
G,M,P ≃ Λ. (6)

If we further assume that ΘΛ ≪ δ, 1, the following reduced system uncouples from the other equations,
regardless of whether the third-order joint cumulants are vanishing or not :

d
dtP = δ (M − P ) ; d

dt∆G,P = δ (∆G,M −∆G,P ) ;

d
dtM = ΛG−M ; d

dt∆G,M = ΛG (1−G)−∆G,M ;

d
dtG = Θ (1−G−GP −∆G,P ) .

(7)

Besides the averages, this system involves the covariances of the gene state variable with protein and
mRNA levels. The stationary state of Eqs. (7) is given by G∗ = Λ−1, with all other variables equal to 1,
thus satisfying scaling (6) exactly. The dynamical behaviour of Eqs. (7) can be studied by carrying out a
stability analysis around the fixed point. It reveals that unlike with the mean-field equations, the system
exibits a Hopf bifurcation leading to oscillatory behaviour, revealing that it can be destabilized by the
stochastic fluctuations. Under the approximation Λ≫ 1, the oscillation criterion is simply

H(Θ) = 4Θ2 +Θ

[
2 (1 + δ)− δ

(1 + δ)
Λ

]
+ δ < 0. (8)

If the gene is infinitely slow (Θ → 0), the criterion is never satisfied because H(0) = δ > 0. For inter-
mediate values of Θ, the quantity H can be become negative provided Λ is high enough and δ is not
too large compared to 1. However this can only occur when ΛΘ ≥ δ + 1, which a priori conflicts with
the assumptions under which the reduced model (7) has been derived. We therefore carry out stochas-
tic simulations of the chemical model (1) to assess the relevance of the two truncations of the moment
equation hierarchy considered here : Eqs. (7) or Eqs. (4) with third-order cumulants set to zero.

We first study how the average value of the gene activity as a function of Θ is reproduced by the two
truncations. Fig. ( 1a) shows how this average depends on Θ and δ due to the presence of fluctuations,
an effect which is not captured by the mean-field equations. An important result is that the reduced
parameter Θ

(
1 + δ−1

)
which appeared in (5) is indeed the main parameter controlling the fixed point

location throughout the range of Θ explored, as curves obtained for various values of θ and δ superimpose
relatively well. The limit values predicted by (6) and (5) for the two extreme regimes Θ → 0 and Θ → ∞,
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respectively, are indeed recovered. Fig. 1b displays the average gene activity predicted from the fixed
point of Eqs. (4) with the third-order cumulants set to zero. The agreement with stochastic simulations is
fairly good : the limit values in Fig. 1a and Fig. 1b are identical, the same global shape with a maximum
around Θ = 1/(1 + δ−1) is observed and the evolution of the maxima with δ is correctly reproduced.
The main discrepancy is that the transition from the fast to the slow gene regime is more abrupt in
Fig. 1b than in Fig. 1a. In contrast to this, the fixed point of Eqs. (7) does not depend on Θ nor δ,
thus incorrectly predicts a constant gene activity (Fig. 1c). At this stage, the model (4) with vanishing
third-order cumulants correctly captures the effect of fluctuations but not the simpler model (7).

Figure 1. Average gene activities as a function of the reduced parameter Θ
(
1+ δ−1

)
(a) Numerical estimation

using stochastic simulations with parameter values : θ/α = 100, Λ = 200, λ = β. Each color corresponds to a
given value of δ, varying from 102 (black) to 10 (cyan). (b) Fixed point value of gene activity in model (4) with
vanishing third-order joint cumulants. (c) Fixed point value of gene activity in model (7). Arrows indicate the
gene activity limiting values given by (5) for large Θ and by (6) for small Θ.

Let us now consider the dynamics of protein level fluctuations. Without feedback, gene switching is a
purely Poissonian process. Protein levels follow the gene state with a characteristic time scale determined
by protein and mRNA lifetimes. With feedback, the probability of switching evolves rapidly in time
as protein levels increase (gene is active) or decrease (gene is inactive). This feedback may reduce the
stochasticity arising from gene switching, with protein peaks occur more regularly.

The regularity of a stochastic oscillatory behavior is often quantified using a temporal autocorrelation
function, which is sensitive to reproducibility both in time and in amplitude. However, temporal regularity
is certainly more relevant than amplitude regularity for biological protein signals. The highly nonlinear
response of many signaling cascades can protect them against fluctuations in amplitude, for example by
saturating output above an input threshold. A standard technique for assessing temporal regularity is
to divide the state space into two regions I and II and to study the distribution of the times where the
system leaves I to enter II. It is often useful to require a minimal excursion in region II to avoid spurious
transitions induced by noise. Here, we detect events where the protein level crosses successively the mean
protein level P ∗ and the P

′∗ = P ∗ + 0.25
√
∆∗
pp level before falling back below the mean protein level.

Given the list of times where the system transits from low to high protein levels, we compute the
probability of detecting n transitions within a time interval of fixed duration. The probability distribution
is then characterized by its variance to mean ratio (Fano factor). This method is inspired by how the
temporal distribution of photons from a light source is generally characterized, with the event of interest
being a photon detection. A Fano factor close to unity indicates that transition times follow a Poison
distribution. A Fano factor greater (less) than unity indicates a super-Poissonian (resp., sub-Poissonian)
distribution corresponding to a bunching (resp., anti-bunching) of transition events. Transition anti-
bunching can be viewed as a stochastic counterpart of deterministic oscillations.

Fig. 2 shows stochastic simulations of the chemical reaction network (1) for a slow, an intermediate
and a fast gene, as well as the probability distribution of the number n of transitions within a given time
window. As expected, protein spikes in the slow gene case (Fig. 2a) are slaved to the switching process,
leading to a Poisson probability distribution for n (Fig. 2d) and accordingly a unity Fano factor. In the
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intermediate gene response time case (Fig. 2b), protein spikes are mostly antibunched (see red circles).
The probability distribution of spike number is gaussian-like (Fig. 2e), the Fano factor being around
0.35. This anti-bunching degrades in the case of a fast gene (Fig. 2c) with the Fano factor rising to 0.5.
Thus, we oberve a resonance effect involving the time in which the gene responds to protein variations
and the time during which previous gene states are remembered, which is controlled by the protein and
RNA decay rates.

Figure 2. Dynamical behaviour. Time evolution of protein copy number for Λ = 200, δ = 1 and θ = 5.10−3 (a),
θ = 0.5 (b), θ = 500 (c). The dashed lines indicate mean protein level and mean protein level plus variance. Red
lines correspond to the high trigger level and spiking events are indicated by red circles. Probabilities of observing
n spikes during a given time window for each of the three regimes (d)-(f).

We have studied systematically how the Fano Factor depends on the gene unbinding rate Θ and the
relative protein decay rate δ in stochastic simulations of reaction network (1). As Fig. ( 3) shows, regularity
of protein spikes is enforced when (1) the decay rates δp and δm are comparable (δ ∼ 1) and (2) the reduced
parameter Θ ∗

(
1 + δ−1

)
is close to unity. Quite remarkably, the parameter space region where protein

spikes are more regularly spaced is extremely well approached with the region where the reduced model (7)
displays deterministic oscillations. This suggests that this model captures well the dynamical interaction
of mean-field variables and fluctuations, although it did not reproduce satisfactorily the average gene
activities in Fig. 2. This probably indicates that the dynamically important joint cumulants are those
involving the gene state variable. This is not surprising given that gene state remains binary in all limits
and is thus the most stochastic variable.

Conclusion

In conclusion, we have studied the stochastic time evolution of the self-repressing gene and characte-
rized the regularity of protein spikes using a Fano-like indicator. This allowed us to evidence a dynamical
resonance phenomenon where a more regular time evolution of protein concentration is observed for cer-
tain values of the relative protein degradation rate and of the gene response time. Average quantities,
on one hand, and the location of the resonance in parameter space, on the other hand, are reproduced
separately by two reduced deterministic models obtained from a truncation of the moment equations
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Figure 3. Fano factor. Dependency of the Fano factor F quantifying spiking regularity on δ and Θ ∗
(
1 + δ−1

)
.

Stochastic simulations of network (1) have been carried out with Λ = 200 ; β = λ ; θ/α = 100. Different values of
the Fano factor F are indicated by red hexagons (F < 0.35), blue pentagons (0.35 < F < 0.4), green diamonds
(0.4 < F < 0.45), cyan triangles (0.45 < F < 0.5), magenta stars (0.5 < F < 0.7), and orange crosses (0.7 < F ).
The black line encloses the region where the reduced model (7) oscillates.

hierarchy. It remains to combine these two models to reach a global description of how averages and
fluctuations interact through nonlinearity in the self-repressing gene circuit.
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