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Résumé. Un matériau granulaire dense et sec, avec friction tangentielle infinie, est modélisé comme un graphe
connexe de grains reliés par des contacts purement répulsifs. Chaque grain peut donc soit rouler sans glisser sur
un autre, soit s’en déconnecter. La stabilité sous cisaillement du granulaire est assurée par la présence de circuits
impairs de grains en contact qui les empéchent de rouler I'un sur 'autre. Le matériau granulaire se trouve alors
dans 'un de deux états thermodynamiques : solide fragile, bloqué (”jammed”) par les circuits impairs, ou fluide
sec, en leur absence. La dynamique du granulaire au voisinage de la transition de blocage, dans un tambour
tournant a vitesse angulaire constante autour d’'un axe horizontal, saute de maniere intermittente entre les états
solide et fluide. Dans 1’état solide fragile, le granulaire suit un cycle limite alternant avalanches et entrainement
par le tambour. C’est un comportement de ”stick-slip” dans un solide soumis a une friction solide (entrainement
par le tambour) et & une force de rappel (gravité). Dans 1’état fluide, la force de friction est visqueuse, et le
matériau granulaire tend vers un point fixe de pente constante. Si la friction tangentielle est supposée nulle, la
modélisation comme un graphe et la frustration causée par les circuits impairs restent valables puisque la force
entre grains demeure scalaire et répulsive.

Abstract. Dry granular matter, with infinite tangential friction, is modeled as a connected graph of grains linked
by purely repulsive contacts. The degrees of freedom of a grain are non-slip rotation on, and disconnection from
another. The material stability under shear (jamming) is ensured by odd circuits of grains in contact that prevent
the grains from rolling on each other. A dense hard granular material has two possible states : fragile solid, blocked
by odd circuits, and dry fluid or bearing, in the absence of odd circuits, that flows under shear by creation and
glide of a pair of dislocations as in plasticity of continuous media. We did introduce the notions of blob, a region of
the material containing only even circuits, and of critical contact that closes an odd circuit. The granular material
is then represented, at low energies and critical applied shear, as a chain of blobs connected by critical contacts.
A granular material inside a cylindrical drum rotating at constant velocity around its horizontal axis alternates
intermittently between solid and fluid states. As a fragile solid, it follows a limit cycle of avalanches (slip) and
stuck rotations with the drum. This is the stick-slip behavior of a solid subjected to solid friction (to the driving
drum) and gravity. In the fluid state, the friction is viscous and the granular material flows to a fixed point with
constant slope. For a vanishing tangential friction, the graph description with the frustrating odd circuits is still
valid, because the force between grains remains a scalar and repulsive.

1 Introduction

We consider in this paper dry granular materials with a tangential friction that is either a) infinite
[1,2] or b) vanishing [3,4]. In both cases, the granular material can be modeled as a graph, with in a), the
dynamical variables carried by the vertices (non-slip rotation of a grain on another), whereas in b) they
are carried by the edges (deformation of struts). Infinite tangential friction and non-slip rotation of the
grains (a) provide a direct mechanism for the physical behavior of the granular material (unjamming
a fragile solid into a dry fluid), and this is why we shall discuss first this model [1,2], and show that
conditions b) lead, albeit indirectly, to the same geometrical organization of granular matter and the
same dynamics.
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Experimentally, dry granular materials have two possible states of flow under shear : a dry fluid [5,6]
in which the particles roll without slip on top of each other (bearings), and a fragile solid [3,4], blocked
by frustrating arches of particles in contact. The sudden transition between these two states relies on
small, extended fluctuations in the medium, typical of second order transitions, unlike the melting of
ordinary solids which is first-order. The fragile solid is geometrically frustrated. Indeed, flow is blocked
by arches or circuits made of odd number of particles in contact with each other, which stabilize the
solid state. In that case the particles (spheres, say) cannot roll freely on each other, thereby blocking
any movement [7,8]. An odd circuit is fragile because it is inoperative once a single link is broken. This
induces a long-range effect (arches can be large in a material without any global symmetry or regular
ordering [9,10]) that leads to a second-order transition with scaling laws. Here the rheology takes place
at various scales, from the smallest (dislocation glide determining the plasticity) to the largest (arches of
size L of the system, responsible for jamming). Unjamming under external shear occurs as intermittency
[11,12] rather than with hysteresis as in ordinary second-order phase transitions, because the line defect
responsible for jamming (the R-loop) has negligible line tension.

A granular material is represented by a configuration of hard core spheres defining a graph where
the center of each sphere is a vertex. Vertices are connected by links or edges depending on whether
two adjacent spheres are in contact or not. Grains are made of spheres of radius R; with ¢ being the
label of the individual sphere with arbitrary choice of the numbering since there is no intrinsic long-range
ordering. We then define an adjacency matrix A of size n X n, where n is the number of vertices. The
elements A; ; are 1 if grain ¢ and j are in contact, 0 else. We define also a valence matrix A; ; = ;0

where z; =) j A; ; is the degree or valency of the vertex i.

R

2 0dd circuits, arches and critical contacts

The rotation (without slip) of spheres in contact is a connection from one grain to the other along
paths. In the absence of odd circuits, this connection is independent of the path chosen (pure gauge)
[9,10,7,8]. An odd circuit blocks or frustrates the free rotation. The dynamics of the graph is built from
the scalar degree of freedom 6; of each sphere. The system can be described by analogy with a system of
springs of coupling constant kg connecting the vertices considered as particles with moment of inertia I,
kinetic energy T and potential V', but here the springs are struts with a repulsive interaction (stress-free
contact is 0; = —6;)

1 .
T:Zimf, V:ksZAi,j [1 — cos (0; +6;)] . (1)
[ 2,J

The linearized Euler-Lagrange equations are given by the characteristic set of relations (—A1 + M) 0 =
0 where M = A + A is the dynamical matrix and A = Iw?/k, the eigenvalue. Consider now a unitary
matrix O such that O™ = O and O;; = (—1)"d; ;. In the case where only even circuits are present
in the system, M is transformed according to OMO " 1=0A0 '4+0AO0 '1=A-A. Q=A-Aisa
standard dynamical matrix for a system made of springs. —Q + 2oI (20 > Zmas) IS a positive matrix
and the theorem of Perron-Frobenius applies. Since > y Q;; = 0, it has A = 0 as lowest non-degenerate
eigenvalue, and Woodstock eigenvector 0] = 37, 0; ;0; =1, or 6; = (—1)".

This transformation is equivalent to coloring as (—1)? the grains enumerated by labels i. O is a gauge
transformation : it transforms both the coupling constants M/ = OMO™! and 6’ = Of. The critical
links are identified as the only links where a pair of grains in contact have the same color. Without them,
circuits are made of an even number of vertices, therefore the mapping defines a set of zero modes, one
for each subgraph of even circuits (which we call blob). Odd circuits, through critical links, prevent the
material behaving as a fluid. In their presence, the lowest eigenvalue is strictly positive (see [9,10] for
details). This eigenvalue serves as an order parameter for the blocked phase, which is proportional to ¢,
the number of critical links. Odd circuits block the system and prevent the material from behaving as a
fluid. The lowest eigenvalue A, is bounded by 4¢/n [9,10] from variational and algebraic arguments.
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The set of critical links defines a minimal surface encircled by a loop. This R-loop [13] is the vorticity
of the irreducible odd circuits with one critical link each (see Fig. 1). The forces in the fragile solid are
concentrated on the frustrated arches blocking the material, and the lowest eigenvalue \,,;, is a measure of
the frustration. The existence of R-loops explains why it is impossible to describe continuously a granular
material without defects. The ”dry fluid” is in fact a perfect three-dimensional bearing [7,8] which does not
resist shear, but is compressible. Under shear the grains rearrange and separate themselves to eliminate
the odd circuits, and the material, albeit ”dry”, can contain more interstitial fluid such as water.

0dd circuits \
Yx

loop (odd vorticity)

Critical contacts

Figure 1. Minimal surface enclosing the critical links in a three-dimensional system. Each odd circuit has one
critical link which crosses a surface bounded by a closed loop, R-loop. Several circuits can share the same critical
link. The shortest is irreducible by definition.

The ratio ¢/n, with ¢ ~ L' and n ~ L%, is inversely proportional to the linear size L of the d-
dimensional system, which is also the size of the largest R-loop near the transition fragile solid-dry fluid
[9,10]. By contrast, in ordered crystallization, the R-loops are small, localized, and ¢/n is finite.

3 Chain of blobs (dry fluid domain represented by a generalized vertex)
connected by critical contacts

For each R-loop, one can construct a chain of blobs, connected by one critical contact. The blobs are
alternatively above and below the surface bounded by the R-loop. Blobs are regions of connected vertices
without odd circuits, with zero eigenvalue or energy. The soft mode has, in each blob B,, 6; = 6, uniform
and arbitrary. Blobs also interact with each other through non-critical links.

The granular material is thus represented as chains of blobs. Fig. 2 represents a typical chain of
such blobs B,, interacting with each other by effective coupling constants J, g for adjacent blobs of same
parity « and 8 and by critical couplings J. 5 between consecutive blobs. Under shear, each blob can
flow by plasticity (dislocation creation et glide). But the collapse of the material as a whole occurs by
breaking all critical contacts. Near critical shear, only the largest R-loop survives (see Fig. 1 and 2). We
can define an effective Hamiltonian for the low-lying energy states, since blobs are connected by a few
links [1,2] : We can also add a time-dependent external periodic driving force (shear) of strength hy and
phase 0y(t) = 2t. The elementary excitations of one particle is non-slip rotation on, and disconnection
from another. A state of the material is given by the {,}. The relative importance of the non-critical
couplings between blobs depends on the surface-to-volume ratio of the blobs, which is small close to
the unjamming transition where one largest R-loop remains and the blobs are large (see Fig. 2). The
elementary excitations of the granular material are those of a chain of blobs, each with uniform 6,,
connected by critical couplings Jj, .. Accordingly, the density of states of low energy is a constant,
independent of the energy in all space dimensions d [3,4,9,10,14].

We can identify two lowest energy states : A large enough external force hy imposes a homogeneous
solution 6, = 0y(t). The penalty of such choice is located in the critical links. The other possibility is to
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minimize the energy in these critical links, leading to only two alternating solutions 6, = +(—1)%0y(t),
which penalizes the blobs, rotating in the direction opposite to the driving shear : If hg is large, the
homogeneous configuration has lower energy ; physically the driving force tends to override the internal
frustration forces located in the critical links. Otherwise, if hg is a finite threshold ~ J*, the dynamics is
imposed by the critical links.

The granular material may be forced to break the odd circuits, leading to the homogeneous state.
Conversely, if odd circuits are reconnected, the system reverts to the alternative state. We can describe
this transition by the averaged quantity 6 = > 0, /Nyo» and the dynamics by 6. For the homogeneous
state, 0 = 6y, 6= 0. Otherwise, the average 8 ~ 0 in the alternating state. This transition is related
to the intermittency phenomena seen recently in [11,12] where a cylinder, half filled with glass beads,
is set to rotate around its fixed, horizontal axis of revolution at a rate {2. The angle 6(t) between the
surface of the granular material and the horizontal plane switches intermittently between a fixed point
of fluctuating, continuous flow (the homogeneous state, 6(t) ~ constant, 6(t) ~ 0), and a limit cycle
of driven rotation 6(t) = 2 and large avalanches 6(t) < £2, that are indeed the two alternating states
(stick-slip of the fragile solid) [1,2]. In the fragile solid state, the driving shear is due to the drum or
to gravity. In the first alternative the chain of blobs is stuck to the drum, driven from the bottom, and
0o = (=1)*2t. When the chain of blobs is driven from the top, by gravity, 6, = —(—1)*6(t), where 6(t)
is the angle defined just above, this situation describing avalanches.

4 Dynamics on graphs [15,16]

For a vanishing tangential friction [3,4], as for an infinite tangential friction, the force between two
grains in contact is a scalar and the granular material can be modeled as a graph, with vertices representing
the grains, and edges, the contacts between grains. A graph I' = {V, E, F'} consists of several vector spaces
Cy(I') = {Cu(I"),C1(I"), Co(I")}, involving vertices i = 1...n(s = 0), edges v = 1...m(s = 1) and, possibly,
circuits J = 1...R; (s = 2) as vectors. A general vector in i—vector space is called an ¢ — chain. Different
(graded) vector spaces are related by the boundary operators 0 or incidence matrices EZ-(S) = +1 if edge

~ is incident on (bounded by) vertex i, = 0 otherwise, EA(:,) = 41 if edge « is part of circuit J. This
requires an orientation of the edges and of the circuits. Poincaré’s identity states that the boundary of a
boundary is zero, thus 9.0 = 0 or E(©) E(®) = 0 : Circuits belong to the kernel of E(®). One recovers the
n x n adjacency matrix A;; by the identity

EOE®t—A_A (2)

independent of the orientation of the edges, where A is the diagonal, valence matrix defined above and
EOt denotes matrix E(© transposed. Consequently, like E(©), A — A is of rank n — 1. Moreover, the
Ry = m — (n — 1) edges not on a spanning tree (tree on I reaching all its vertices) form a basis for
independent circuits (the famous 1847 result of Kirchhoff) [15,16]. The cyclomatic or first Betti number
of the graph R; is the dimensionality of circuit space. The choices of any particular spanning tree, and
of the orientation of the edges, are severely reduced in hard granular materials by the concept of blobs
and critical links that constitute basic edges not on a spanning tree.

For an infinite tangential friction, the dynamical variables are the angles of rotation of the grains 6;,
located on the vertices of the graph. The physical state of the granular material is a vector v = {v;} €
Co(I"). The Hamiltonian of the system is obtained from the dynamical matrix M. It describes a chain
of blobs « (each in a ground state of zero energy 0,a, a = {a;} = (1,—1,1,—1,...) alternatively on the
vertices of the blob), interacting through critical links that carry a finite energy.

For a vanishing tangential friction, the dynamical variables are strained struts, located on the edges
of the graph. The physical state is a vector e = {e,} € C1(I"). Consider two edges incident on the same
vertex. They should have opposite orientations to represent struts (see Fig. 3a and 3b). This is possible
for even circuits only (circuits with an even number of struts). For each odd circuit, there is one critical
edge carrying a finite energy J*. It specifies the odd circuit, gives it its orientation and is not on the
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spanning tree. Thus, e = {e,} = (1,—1,1, -1, ... — 1) for even circuits, e = (1,—1,1, -1, ... — 1; 1) for odd
circuits (the critical edge component is 1, separated by a ;), and

1

E

t
Y

ey = 0, even circuit; Eglv)ten, =1, odd circuit. (3)

The orientation is consistent at each vertex of degree z; (i.e. all incident edges have the same orien-
tation), except at the vertex bounding a critical edge with the wrong orientation (Figs 3b and 3c),
hence

EZ-(,?)e7 = +(z; — 2) if a critical edge is incident on vertex 7 with the wrong orientation,

Ei(,(y))eW = +2z; everywhere else. (4)

We recover the chain of blobs interacting through critical links, obtained for infinite tangential friction.
But here as for electric networks, the physical state vectors are in the edge-space of I", where they obey
the circuit and vertex equations above (known as Kirchhof f's laws in electrical networks, where the
right-hand side = 0) [15]. Here, the critical edges are not on the spanning tree : they form the basis
for (independent) odd circuits. Out of the Ry independent circuits, ¢ are specified by the critical edges.
Within the blobs, the spanning tree remains arbitrary (Fig. 2).

04 03 05
/ \
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Figure 2. Chain of blobs representing the granular material near unjamming as grains in contact through struts
(zero tangential friction). The blobs 6, are dry fluid domains (each spanned by an arbitrary tree) connected by
critical (red, thick-dashed) or non-critical links (blue thin-dashed and black lines). The black lines and the blobs
constitute a spanning tree for the material. Cf. the nearly identical figure in [1,2] illustrating infinite tangential
friction.

Each blob « has an arbitrary spanning tree, with a non-frustrated dynamics. It can be described by
the variable 6, (see Fig. 2) as a renormalized vertex in a general graph (the non-critical links between
two blobs are multiple, whereas there is only one critical link between two (vertices of different) blobs).
Only one non-critical link between two blobs is needed to constitute a spanning tree (in Fig. 2, one would
need a non-critical link between blobs 5 and 4, or between blobs 1 and 2), so that the ¢ critical links and
almost all non-critical links constitute a basis for independent circuits.

The last section of this paper was motivated by a stimulating discussion at Yale (O’Hern group and
NR, Nov.’11).
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a+l
(a) (odd) circuit  (b) vertex (z; =5) (c) critical edge between blobs o and a + 1

Figure 3. Physical state for vertices (grains) connected by struts. In (c) the critical edge is incident on blob «
with the proper orientation. The critical edge (red, thick-dashed line), ¢ the spanning tree, imposes the orientation
of the circuit.
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