Comment le cortex traite t-il la texture des images I(x,y) transmises par la rétine? co-auteurs : G. Faye, O. Faugeras (INRIA Sophia Antipolis)

Hypothèse : la "colonne" corticale associée au point (x, y) évalue le tenseur de structure $\mathcal{T} = (\nabla I \otimes {}^t \nabla I) \star g_{\sigma} \mathbf{I_2}$ $(g_{\sigma} \text{ gaussienne})$, pour une portion d'image centrée en (x, y). Modèle du type Wilson-Cowan pour le potentiel de membrane $V(\mathcal{T}, t)$ de la colonne :

$$\partial_t V(\mathcal{T}, t) = -V(\mathcal{T}, t) + \int_{\mathcal{H}} w(d(\mathcal{T}, \mathcal{T}')) S(V(\mathcal{T}', t)) d\mathcal{T}' + I_{ext}(\mathcal{T}, t)$$

où \mathcal{H} est le cône des matrices symétriques déf. positives, $d(\mathcal{T}, \mathcal{T}')$ une distance dans \mathcal{H} , w une fonction "chapeau mexicain" et S une saturation non linéaire (sigmoïde).

Si $I_{ext} = 0$ (pas d'input), problème de formation spontanée de structures (hallucinations?) dans l'espace \mathcal{H} (paramètre de bifurcation = pente de S).

Invariance par le groupe des isométries de $\mathcal{H}:GL(2,\mathbb{R})$.

Bifurcation de structures périodiques dans \mathcal{H}

On suppose $\det(\mathcal{T}) = 1$, d'où \mathcal{H} devient le plan hyperbolique \mathcal{D} (disque de Poincaré) et $GL(2,\mathbb{R})$ devient U(1,1) (groupe des isométries de \mathcal{D}).

Structures périodiques dans \mathcal{D} = invariantes par un groupe de pavage Γ de \mathcal{D} .

Méthode : 1. identifier les modes propres invariants par Γ , 2. utiliser les méthodes de bifurcation avec symétrie.

Exemple : le pavage par des octogones réguliers.

Résultat : classification complète des bifurcations de patterns stationnaires avec cette périodicité.



