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Stochastic evolution of a turbulent interface in a shear flow
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Résumé. L’écoulement de Couette plan, confiné entre deux plaques parallèles qui cisaillent le fluide, est un
exemple classique où la transition vers la turbulence se produit de manière sous-critique, c’est-à-dire malgré la
stabilité linéaire de l’écoulement de base. Ici nous nous intéressons à la compétition spatio-temporelle entre la
phase turbulente (active) et la phase laminaire (absorbante). En particulier, des simulations numériques montrent
que l’interface délimitant ces deux phases, lorsqu’elle est parallèle à l’écoulement moyen, se déplace d’une manière
stochastique qui peut être modélisée comme une marche aléatoire continue en temps. L’analyse statistique suggère
un processus de diffusion gaussien et permet de déterminer la vitesse moyenne de cette interface en fonction du
nombre de Reynolds, ainsi que la valeur seuil au-delà de laquelle la turbulence contamine tout le domaine. Pour
les nombres de Reynolds les plus bas, cette dynamique stochastique entre en compétition avec une dynamique de
croissance déterministe des perturbations localisées. Cette dernière dynamique inattendue résulte de l’existence
d’un régime, dit de snaking, où cohabitent de multiples solutions localisées et instables des équations de Navier-
Stokes.

Abstract. Plane Couette flow, the flow sheared between two parallel counter-sliding plates, is a classical example
where transition to turbulence proceeds in a subcritical way, i.e. despite the linear stability of the base state. We
are here interested in the spatio-temporal competition between the (active) turbulent phase and the (absorbing)
laminar one. In particular, numerical simulations show that the interface delimiting those two phases, when
parallel to the mean flow, moves in a stochastic manner which can be modelled as a continuous-time random
walk. Statistical analysis suggests a Gaussian diffusion process and allows one to derive the mean drift velocity
of this interface as a function of the Reynolds number, as well as the threshold value above which turbulence
contaminates the whole domain. For the lowest values of the Reynolds number, the stochastic dynamics competes
with a determistic growth regime of localised perturbations. The latter, rather unexpectedly, is related to the
existence of a snaking regime where multiple unstable localised solutions of the Navier-Stokes equations co-exist.

1 Statistical analysis

In this study we are interested in determining numerically the velocity at which a laminar/turbulent
interfaces moves through a shear flow. Because of its simplicity, we will consider the example of plane
Couette flow, which has zero net flux. Plane Couette flow is the flow sheared between two parallel plates
of velocities ±U in the streamwise direction x, separated by a gap 2h in the wall-normal direction y.
The spanwise direction is noted z. The three-dimensional flow is governed by the incompressible Navier-
Stokes equations with no-slip boundary conditions at both walls y = ±1. Velocities, time and space are
non-dimensionalised by U , h and h

U , respectively. It is known that this flow admits a steady 1D solution

u(y) = Uy
h which is linearly stable for all Re, where Re = Uh

ν is the Reynolds number, with ν the
kinematic viscosity of the fluid.

The spectral representation of the flow is based on Chebyshev polynomials in the y-direction, and a
discrete Fourier decomposition in both x and z. This implies periodic boundary conditions in the in-plane
directions, with the associated wavelengths noted respectively Lx and Lz. Time-stepping is achieved by a
fourth-order Runge-Kutta integrator with adaptative variable timestep. The number of spectral modes is
determined by the tripletN = (Nx, Ny, Nz), with the extra use of a 3

2 -dealiasing rule for the evaluation of
the nonlinear terms. We perform well-resolved simulations in a domainD1 of size (Lx, Lz) = (10.417, 250),
using a resolution N = (32, 49, 1024). For the simulations at the lowest values of Re, the slow spreading
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of localised perturbations made it possible to use a shorter domain D2 of size (Lx, Lz) = (10.417, 125)
with half the number of collocations points in the spanwise direction, i.e. N = (32, 49, 512). The short
streamwise extent Lx is used as a numerical trick forcing potential laminar/turbulent interfaces to be
orthogonal to the spanwise direction z, preventing the formation of a secondary large-scale flow around
localised spots. Note that a very similar geometry has been used by Barkley & Tuckerman (Fig. 15 in [7])
in quenching experiments with (Lx, Lz) = (10, 120). More recently, edge states and other finite-amplitude
solutions were found in a similar geometry with (4π, 16π)[6].

Fig. 1. Space-time (z, t) diagrams for Re = 350 (left) and Re=500 (middle,right). Displayed are the quantity
Y (z, t) (left, middle) and the iso-contours Y (z, t) = ±0.2 (right)

The diagrams shown in Figure 1 and 5 corresponds to two realisations at Re = 350 and Re = 500.
The visualised quantity corresponds here to

Y (z, t) = {y|〈u〉x = 0}, (1)

the wall-normal coordinate of the < u >x= 0 iso-surface, where < u >x is the streamwise velocity
averaged over the wavelength Lx. This quantity has been chosen because it is zero in the laminar phase
and departs away from zero in the presence of turbulent bursts. Taking |Y | = 0.2 in Eq. 1as a criterion
to locate the laminar/turbulent interface in absolute value has proven a robust choice.

The turbulent zone is here delimited by two asymmetric fronts. Each of the two fronts clearly moves
from or towards the turbulent area in discrete steps, gaining or losing one streak (occasionnally several
streaks). The time interval between two successive events is not constant, requesting statistical description.
The distance along which the front has progressed or retreated during one of these events is also not
constant, firstly because streaks do not possess a uniquely defined spanwise wavelength, secondly because
several streaks can be gained or lost at the same time. A convenient description of the motion of each
front, well-adapted to a statistical analysis, is possible within the frame of continuous-time random walks
(CTRW) [5]. Retreat and progress of a given interface are seen here as two competing and complementary
events occuring suddenly on a distance ∆z (the ”jump length”) after a time T (”the waiting time”). The
CTRW process is here as asymmetric since the probabilities for the two events is not expected to be
identical, statistically inducing a drift of the front in one direction or the other. If g refers to progress
events and r to retreat events, four cumulative probability distributions are needed to characterise the
whole process :

– Pg(T > t) (resp. Pr(T > t)) : the probability that the next event be a progress (resp. retreat) event
after a waiting time T being larger than a time t ;

– Pg(∆z > L) (resp. Pr(∆z > L)) : the probability that the next event be a progress (resp. retreat)
event with a jump length ∆z being larger than a distance L.

Proper application of this formalism demands that ∆z and T be treated as statistically independent
variables, and that ∆z and T be independent of time and space, i.e. that the statistical properties of
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those two variables do not depend of the current position of the front. By convention we will consider
all values of ∆z positive, assuming that a positive drift corresponds to a g event and a negative drift to
a r event. The various values of ∆z and T are directly measured from diagrams such as Fig. 1 (right).
They are gathered over a large number of independent realisations for each value of Re in the range
[230 : 650], yielding the four cumulative probability distributions required. Fig. 2 clearly suggests that
the cumulative distributions Pg and Pr for the waiting times are well fitted by exponential distributions.
This corresponds to a memoryless process for the waiting times regardless of which event is considered
(”g” or ”r”). Exponential scaling also holds reasonably well for the cumulative distributions of the jump
lengths, see Fig. 3. The implications are strong : as long as the exponential scaling holds, the motion of
the front can be thought of as a Gaussian (normal) diffusion process.
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Fig. 2. Cumulative probability distributions for the waiting times Pg(T > t) (top) and Pr(T > t) (bottom) for
various values of Re.
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Fig. 3. Cumulative probability distributions for the waiting times Pg(∆z > L) (top) and Pg(∆z > L) (bottom)
for various values of Re.

A comparison of the distributions corresponding to nearly all values of Re investigated is shown in
Figure 2 for the waiting times and Figure 3 for the jump lengths. A clear Poissonian trend emerges for
Pg(T ) and Pg(∆z) for Re ≥ 300 with a slope monotonously decreasing with Re. The cases 250 ≤ Re ≤ 290
are less clearly amenable to an interpretation as a memory-less process, because of the presence of ex-
treme events (very long waiting times and/or long jumps). The data is here insufficient to decide whether
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the extreme events only produce unconverged statistics (still ruled by Poissonian dynamics) or if another
tail is emerging with a different (possibly anomalous) scaling. For Re = 230 (see Fig. 2) and below (not
shown), the global deviation from exponential is strong, suggesting a different process. Description of
the retreat statistics Pr(T ) and Pr(∆z) reveals the same trends, however there slopes increase in abso-
lute value with increasing Re. Furthermore, the analysis is blurred at high Re by the rarity of retreat
events compared to progress events : above Re ≥ 400, the occurence of retreat events would demand too
much simulation time (or equivalently too many independent realisations) to produce converged statistics.

Interpolation of the slopes in Fig. 2 directly yields the average values. We exploit this property to
compute the conditional averages 〈Tg〉 (resp. 〈Tr〉), i.e. the average waiting time given that the next event
is a ”g” event (resp. an ”r” event), and equivalently the conditional averages 〈∆zg〉 and 〈∆zr〉. Error
bars are computed by comparing undersampled distributions in a Bayesian way, constantly excluding
events depicted as rare ones. As expected from Fig. 2, Fig. 4 (left) shows that the conditional average
time 〈Tg〉 decreases monotonously with Re while 〈Tr〉 monotonously increases with it. The two averages
thus safely cross at a given value of Re, Rec1 = 320 ± 10. The interpretation is straightforward : for
Re > Rec1, the probability is higher than the next event shall be a progress event than a retreat event,
regardless of the history of the front, while retreat events are favoured statistically for Re < Rec1. The
two average times coincide exactly only for Re = Rec1. Note the closeness of Rec1 to the experimental
thresholds Reg ≈ 325 in large domains. Strictly speaking, this does not mean that the front is statistically
steady at Re = Rec1 since the jump length distributions must also be included in the picture. Figure
4 (right) shows that 〈∆zg〉 decreases slowly with Re. 〈∆zr〉, in the range where data is available, also
shows a decreasing behaviour. Rather than the expected high-Re trend, the most striking feature of Fig.
4 (right) is the tendency of both 〈∆zg〉 and 〈∆zr〉 to grow large at low Re, up to much larger values than
the width of a streak. This confirms the observation that a large set of streaks can be either gained or
lost brutally near the interface, consistently with an increase of the spanwise correlation length at low Re.
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Fig. 4. Mean waiting times (left) and mean jump length (right) vs. Re.

2 Depinning transition

The results of the previous section point out that the assumption for Gaussianity breaks down for the
lowest values of Re. From Re ∼ 280 down to Re = 217± 1, some unexpected non-trivial (not necessary
”turbulent”) dynamics is observed, characterised by phases of regular growth over a time much longer
than predicted by low-Re extrapolation of the previous distributions (see Figure 5). These long growth
phases are very reminiscent of the depinning transition predicted in the vicinity of a homoclinic snaking



Stochastic evolution of a turbulent interface in a shear flow 61

region in extended one-dimensional systems parametrised by one governing parameter r (see Figure 14 in
Ref. [1]). Homoclinic snaking is observed in ordinary differential equations where a non-trivial (”patter-
ned”) steady state with a spatially periodic structure bifurcates subcritically from a trivial homogeneous
(”laminar”) solution. The non-trivial branch then bifurcates into two branches which can be traced down
the governing parameter and begin to intertwingle inside a narrow range [r1 : r2], giving rise to a mul-
tiplicity of steady localised states pinned to the non-localised patterned state. Analysis in the case of
the Swift-Hohenberg equation has shown that for 0 < δ = r − r2 << 1, depinning of the fronts occurs,
i.e. the fronts are no longer stationary yet drift so that the patterned state invades the whole domain,
with a velocity scaling as O(δ

1
2 )) (see Figure 14 in Ref. [1]). Recently, Schneider et al. have considered

the case of pCf with periodic boundary conditions in x and z with extension in the z direction, taking
(Lx, Lz) = (4π, 16π) [6]. This is qualitatively very similar to the quasi-1D geometry considered here.
They have identified a snaking region in a interval [Res1 : Res2] ≈ [170 : 175] containing a series of
z-localised solutions, either steady of travelling slowly in the x-direction. More recently, these authors
have investigated the Lz-dependence of the snaking interval, showing that Res2 rapidly increases with
decreasing Lz, suggesting the range ≈ 201− 213 for Lz = 10.417 ≈ 3.3π [4].

Fig. 5. Space-time (z, t) diagram for the quantity Y (z, t) ; Re=220

In order to verify that the long phases of growth are related to the depinning transition, a set of
simulations has been analysed for several values of Re between 190 and 280, all starting from the same
turbulent state obtained in a previous run at Re =250. Since we are interested here in long growth phases
rather than on retreat/progress events on a short time-scale, we have deliberately selected only growth
events with a constant velocity on a time scale ∆T > 1000. An interpolation is then performed directly
from space-time- diagrams such as the one in Fig. 5, yielding the front velocity c = ∆z

∆T . We have checked
that c scales like O(

√
Re−Res2), with Res2 given by ≈ 217±1 (see Figure 6). The match with available

data is thus very satisfying, especially given the discrepancy in the values of Lx considered.

3 Conclusions

We have investigated the dynamics of a laminar-turbulent interface in plane Couette flow, in the
special case where the interface is parallel to the mean flow direction. The motion appears as a stochastic
process above Re ≥ 280, with an average speed increasing from negative values at low Re to positive values
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Fig. 6. Bifurcation diagram showing the competition between the deterministic depinning branch and the
stochastic branch

at higher Re. Interestingly, the front velocity reaches a plateau for Re ≈ [320 : 410], which corresponds
to the range of Re at which robust laminar/turbulent patterns are observed in experiments [3,7]. It is
not excluded that the extra advection by the large-scale flow induced by turbulent fluctuations could
stabilise the motion of the fronts and thus explain the robustness of the patterns. For lower values of Re,
stochasticity is observed to compete with a deterministic dynamics, which we interprete as a depinning
transition from the homoclinic snaking regime already identified using an other approach (as in Figure
6). Whether stochastic and deterministic branches bifurcate one from another or whether these are two
disconnected phenomena remains to be investigated.
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