Coupled Logistic Maps, growing surfaces and slow systems

Eytan Katzav!? & Leticia F. Cugliandolo?3

! Laboratoire de Physique Statistique de I'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05,

France

Laboratoire de Physique Théorique de I'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05,
France

Laboratoire de Physique Théorique et Hautes Energies, Jussieu, 5eme étage, Tour 25, 4 Place Jussieu, 75252
Paris Cedex 05, France

eytan.katzav@lpt.ens.fr

Résumé. Nous étudions le comportement spatio-temporel de la limite continue d’un ensemble d’applications
logistiques couplées sur un echaine uni-dimensionnelle. Nous montrons que ’équation & dérivés partielles résultante
est reliée a 1’équation stochastique de croissance de Kardar-Parisi-Zhang et & 1’équation de Fisher-Kolmogorov-
Petrovskii-Piscounov décrivant la propagation des fronts. Une étude du vecteur de Lyapunov du modele discret
confirme que son comportement spatio-temporel est de type KPZ.

Abstract. We discuss the space and time dependence of the continuum limit of an ensemble of coupled logistic
maps on a one dimensional lattice. We show that the resulting partial differential equation has elements of the
stochastic Kardar-Parisi-Zhang growth equation and of the Fisher-Kolmogorov-Petrovskii-Piscounov equation
describing front propagation. A study of the Lyapunov vector of the discrete model confirms that its space-time
behavior is of KPZ type.

1 Introduction

Coupled map lattices are dynamical systems with very different collective spatio-temporal regimes
selected by tuning a few parameters that are, typically, local ones controlling the chaoticity of the in-
dependent units, and the coupling between different units [1]. There have been several attempts to use
statistical mechanics notions to describe their spatiotemporal behavior [2]. Continuous limits have also
been considered [3]. In this contribution we summarize the results of our recent investigation of the conti-
nuous limit of a one dimensional ring of diffusively coupled logistic maps [7]. We discuss its connection
with (i) the stochastic Kardar-Parisi-Zhang (KPZ) growth partial-differential equation [4] ; (ii) the deter-
ministic Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) partial differential equation for the spreading
of a favorable mutation in the form of a wave [5,6].

2 The continuum limit of the coupled map lattice

The logistic map is a non-linear evolution equation acting on a continuous variable z taking values in
the unit interval [0, 1] :
Tn = f(@n-1) =rep—1(1 —xpn_1) . (1)

The discrete time is labeled by n = 0,1, .... The parameter r takes values in [0,4]. The time series has
very different behavior depending on the value of r. For 0 < r < 1 the iteration approaches the fixed
point * = 0. For 1 < r < 3 the asymptotic solution takes the finite value 2*(r) = 1 — 1/r for almost
any initial condition. Beyond r = 3 the asymptotic solution bifurcates, x,, oscillates between two values
x7 and x5, and the solution has period 2. Increasing r other bifurcations appear at sharp values. Very
complex dynamic behavior arises in the range r € [3.57, 1] : the map has bands of chaotic behavior, i.e.
different initial conditions exponentially diverge, intertwined with windows of periodic behavior.



148 E. Katzav & L. F. Cygliandolo

A coupled logistic map lattice is a discrete array of coupled continuous variables, z?, each of them
evolving in time following (1). A typical interaction that we use here is a nearest neighbors spatial coupling
of Laplacian form :

oh = flat ) + 5 [Fai) = 2f (@) + @)1 @

with 26N = z¢ for all n with N the number of elements on the ring. The initial condition is usually
chosen to be random and thus taken from the uniform distribution on the interval [0, 1] independently
on each site. v is the coupling strength between the nodes and plays the role of a viscosity. In a nutshell,
the dynamics of this system is characterized by a competition between the diffusion term, that tends
to produce an homogeneous behavior in space, and the chaotic motion of each unit, that favors spatial
inhomogeneous behavior due to the high sensitivity to the initial conditions.

The main idea is to take the continuum limit of the CML using the usual discretization of time and
space derivatives, e.g. % — %, etc. with dt the time-step and dx the lattice spacing that equal one
in our system of units. The CML of logistic elements then becomes

5 (1=2h) =5 —wr o=
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) + (r —1)h —rh?, (3)

where we called x the coordinate (idx — x), t the time (ndt — t), and h the field [z — h(x,t) = h].
One immediately notices that eq. (3) looks like a KPZ or FKPP equation but :

(i) By definition the field h is bounded and takes values in the unit interval. Thus, the resulting equation
should have an effective confining potential that limits the field to a finite range. The field is not
bounded in KPZ but it is in the FKPP equation.

(ii) The elastic term is here multiplied by a field-dependent viscosity

_vr

v =2

(1-2h). (4)
First, v(h) is negative for A < 1/2 which implies an instability in the hydrodynamic limit. It was shown
in [8] and [9] that in the Kuramoto-Sivashinsky equation a similar instability taps the system and
so creates an effective ‘noise’ leading to a mapping onto the KPZ equation. The confining potential
restraints the instabilities caused by v(h) < 0. Second, if h remains bounded the viscosity takes values
on a finite interval. However, we expect the field-dependent bare viscosity to be renormalized at large
scales by the effect of the non-linear terms (see below) and thus its precise value seems not to be very
important.

(iii) The second, non-linear term is of the form of the one in the KPZ equation with a negative coupling
A = —vr, though the sign of A should not be important. This term does not exist in the FKPP
equation.

(iv) The last two terms read
n(x,t) = (r — Dh(z,t) — rh*(x,t) . (5)

We notice that these terms are not present in the KPZ equation. In order to compare to the latter
we argued that they have a double identity : on the one hand n behaves roughly as a short-range
correlated noise in space and time ; on the other hand it can be interpreted as a force derived from a
confining potential
oV (h) (r—1) r
= V(h) = —~——2h* + -h3. 6
n=- (h) = —n 4 (6)
On the other hand, these terms are identical to the ones in the FKPP equation with a particular
choice of the parameters in the source terms.
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3 Results

Having the connection with KPZ and FKPP equations in mind we integrated numerically the CML
of logistic units with up to N = 1024 sites and periodic boundary conditions, and we analyzed the space
and time behavior of several observables. All units were updated in parallel. We focused on parameters
that set the system in the asymptotic chaotic regime (typically, v = 0.4 and r = 4).

First, we analyzed the statistical properties of the ‘noise’ 1, and we found that, even though it is not
a perfect random noise it is rather short-ranged correlated in space and time. These terms also provide
a confining potential to the surface fluctuations and its roughness is suppressed.

The decay in time of the field-field correlations is still non-trivial and very similar to the one found
for the (usual and unbounded) KPZ equation [see, [10,11,12]]. In Fig. 1 we show the space averaged, time
correlation of the field [ { hpgn B )]
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Fig.1. The correlation function [( hmin hm )] as a function of n?3.

The linear dependence in the linear-logarithmic scale used in panel (b) indicates the stretched expo-
nential decay

Ch(t)~e™ ,  with (=2/3. (7)

Panel (a) shows that the decay occurs in an oscillatory way. The dependence of the exponent ¢ with r
is very weak. A number of authors have signalled the possible relevance of CMLs in describing different
aspects of glassy relaxation. Recently, [13] studied the same model in its intermittent regime (v = 0.4, r ~
3.83) with the aim of relating the 10 orders of magnitude stretched exponential decay of its distribution of
trapping times (times in which an element remains locked into one of the coarse-grained values s?, = +1)
to the one observed in super-cooled liquids, and they associated this stretched exponential decay to the
one of the correlation function. As we have already stressed, we also obtain a stretched exponential
relaxation for larger value of r where trapping intervals for the coarse-grained variables s, do not exist.

In the same spirit, we derive a continuum partial differential equation governing the evolution of the
Lyapunov vector of that system. The notion of a Lyapunov vector is one of the ways to extend the notion
of Lyapunov exponent to space-time chaos. By deriving the continuum equation, we confirm a conjecture
by [14,15] that the space-time behavior of the Lyapunov vector becomes the one of the KPZ through a
mapping to the Directed Polymer problem. The largest Lyapunov exponent is then obtained from the
norm of the Lyapunov vector. f one uses the so-called 0-norm,

No(t) = exp l%/o h(m,t)dx] , (8)
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it is then assured to be a self-averaging quantity. In addition, the Lyapunov exponent is given by

)\ _ hm 1DNO (T) — thQ (0) : (9)

T—o0 T
and this is no other than the large-deviation function for the Asymmetric Exclusion Process (ASEP).
calculated previously by Derrida and Appert [16]. The ASEP is a discrete model in the universality class
as KPZ in one dimension. In terms of the ASEP, the Lyapunov exponent is given by

1 —
A=p(l=p)+ [)(QTBP)G( 2ﬂp(1—p)L) (10)
where L is the system size, p is a the density of particles (a parameter in ASEP), and G(f) is a scaling
function independent of L and p and known is an implicit form (see [16] for more details).

This result is useful for studying finite size effects and, more importantly, it can be used to estimate
the largest Lyapunov exponent. Doing this we get A = 9/32 ~ 0.28 while in numerical simulations it was
found to be A ~ 0.38 [15] which is of the same order of magnitude as our result.

Finally, we analyzed the interpretation of the continuum limit of the CML as a FKPP non-linear
diffusion equation with an additional KPZ non-linearity and the possibility of developing traveling wave
configurations. We found that the CML do indeed have traveling wave solutions with a velocity that
depends on the initial conditions. A more careful analysis is needed to classify them all.

4 Conclusions

Emergence of slow relaxations for this system signals the possible relevance of CMLs in describing
different aspects of glassy relaxation, as was already noticed by several authors. With the baggage gained
from the current understanding of the dynamics of glassy systems we intend to address generations
of effective temperatures in this nonlinear chaotic system and the possible appearance of a fluctuation
relation.
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