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Résumé. Nous avons étudié la propagation d’un front de fissure dans un milieu hétérogène. Dans ce but, nous
avons développé au second ordre le facteur d’intensité des contraintes d’un front de fissure courbe, autour de sa
solution pour un front droit, en généralisant un premier résultat classique dû à Rice. Nous avons ainsi proposé une
équation de mouvement pour la propagation d’un front de fissure dans un milieu hétérogène qui contient deux
ingrédients principaux - l’irréversibilité de la propagation du front et les effets non linéaires. En utilisant l’équation
stochastique proposée pour le mouvement du front de fissure, nous avons étudié la dynamique de propagation
d’un front de fissure dans un milieu hétérogène dans le régime quasi-statique. L’approche consiste à utiliser une
expansion auto-consistante (self consistent expansion) introduite par Schwartz et Edwards. Nous avons découvert
une transition de phase dynamique continue entre une phase lisse (à grandes échelles) et une phase rugueuse, avec
un exposant de rugosité α = 1/2.

Abstract. In this work we study the propagation of planar crack fronts in heterogenous materials. For that
purpose, we first derive the second order variation in the local static stress intensity factor of a tensile crack with
a curved front, thus generalizing the classical first order result of Rice. Using this, we propose an equation of
motion for the propagating crack front that contains two main new ingredients - irreversibility of the propagation
of the crack front and nonlinear effects. The proposed equation allows for a systematic study of the roughening of
the a moving front in the quasi-static regime by using the Self Consistent Expansion, which reveals a rough phase
described by a roughness exponent α = 1/2.

1 Introduction

The propagation of a crack front in a brittle material is the playground of a number of physical
phenomena which range from dynamic instabilities of fast moving cracks [1] to quasi-static instabilities of
crack paths [2,3], or of crack fronts [4,5,6,7,8,9]. Although the actual theory of brittle fracture mechanics
succeeded to explain a number of instabilities, the experimentally observed self-affine roughness of a crack
front propagating through a heterogeneous medium remains the subject of theoretical debate [6,7,8].
This phenomenon is of fundamental importance, because it may be regarded as an archetype of self-affine
patterns induced by advancing fronts. Wetting of a disordered substrate being another example of systems
with a similar structure [10,11].

In the framework of linear elastic fracture mechanics, an important step was performed by Rice
[12] following a work of Meade and Keer [13]. He gave a general formula for the first order variation
in elastic fields of a planar curved crack front and subsequent analysis was mainly based on this work
[6,7,14,15,16,17]. However, aspects related to crack front roughness and stability could not be derived
within this first order perturbation solution. A possible explanation, which has been suggested in the
context of the wetting problem [11], is that higher order variations might be necessary for the study
of stability and roughening properties of these fronts. For that reason, as a first step in the direction of
providing a theoretical explanation we derived a formula for the second order variation in elastic fields of a
planar curved crack front [18]. It uses a methodology introduced in [9] for the study of the peeling-induced
crack-front instability in a confined elastic film.
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Fig.1. Schematic of the problem of a half-plane crack on y = 0 in an infinite body. The average penetration of
the crack front in the x-direction is L. The straight reference front in the z-direction and the perturbation h(z)
around it are also shown.

2 The second variation in the elastic fields

The problem of a half-plane crack located in the plane y = 0 with a curved front (see Fig. 1) can
be solved by using the linear equations of elasticity. It has been shown [13] that these equations are
satisfied for a tensile loading that is symmetric to the crack plane and so no other components of the
stress intensity factors (SIFs), other than KI are present for that case. From a mathematical point of
view, the starting point is one of finding a function Φ satisfying

4Φ(x, y, z) = 0 , (1)

having vanishing derivatives at infinity. Defining h(z) to be the position of the crack front, the main
challenge is to solve for Φ in the presence of this curved front. This is done essentially by transforming
into a set of coordinates defined at the crack front, i.e. from (x, y, z) to (X ≡ x−h(z), y, z) [9]. The result
of this calculation is given schematically by

KI(z) = KI0 + KI1(z) + KI2(z) + O

(

h3,
h

L

)

, (2)

where KI0 is just the SIF of a straight crack under the same loading conditions, KI1(z) is the first order
variation, derived previously by [12], and KI2(z) is the new result. These terms are given by

KI1(z) = PV

∫ ∞

−∞
K0(z

′)
h(z′) − h(z)

(z′ − z)2
dz′

2π
, (3)

KI2(z) = −
1

8
K0(z)h′2(z) + PV

∫ ∞

−∞

∫ ∞

−∞
K0(z

′)
(h(z′) − h(z))(h(z′′) − h(z′))

(z′ − z)2(z′′ − z′)2
dz′′

2π

dz′

2π
, (4)

Let us emphasize that for the study of the crack front stability, this perturbation expansion is in-
complete, because contributions of order (h/L) have been omitted (with L being the average length of
the crack in the z direction — see Fig. 1). This statement is true even for a linear stability analysis. An
example of the importance of such contributions is given by the linear stability analysis of the peeling-
induced crack-front in a confined elastic film [9], where the (h/L) terms do rule the stability of the crack
front. From a conceptual point of view these terms are important to keep contact with experiments [5],
because a quasistatic moving crack front will always stop (dK/dL < 0), unless the applied force is in-
creased. Indeed the experimental realizations for the study of crack front roughness use the large length
scale L in order to make the interface moving, by applying an increasing opening in a cantilever beam
configuration. We believe that such effects are also present in wetting experiments, where the contact line
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is displaced by pulling off the substrate. In such conditions, the roughening of the interface results from
a competition between the microscopic pinning effects and the destabilizing effects of the macroscopic
driving.

3 The equation of motion

The next step is to propose an equation for the motion of a planar crack in a heterogeneous material.
The present approach is very similar to the one introduced by Gao and Rice [14,15,16]. We write the
equation of motion for the moving crack front as a stochastic partial differential equation by using two
main ingredients - the irreversibility of crack front propagation and the nonlinear effects. Here, we refer
to h(z) as the fluctuating part of the interface, so that by definition the real location of the interface
is given by L + h(z), and L is its average. The proposed equation contains two important ingredients -
irreversibility of the propagation of the crack front and nonlinear effects. It is given by

∂h

∂t
(z, t) =

√

1 + h′2 [KI (h) − Kc (z, h)] Θ [KI − Kc] , (5)

where h′ = ∂h/∂z, Θ(·) is the Heaviside function, KI(h) is the stress intensity factor of the crack front
(given to second order above) and Kc (z, h) is a random term representing the heterogeneity in the local
material toughness due to disorder. The random term can always be separated as Kc (z, h) = K∗+η (z, h),
where K∗ is an average toughness and η is its fluctuating part.

Solutions of stochastic growth models such as Eq. (5) exhibit scaling behavior which is described using
the time dependent height-height correlation function

〈

[h(z, t) − h(z′, t′)]
2
〉1/2

= |z − z′|2αf

(

|z − z′|

|t − t′|µ

)

, (6)

where α (sometimes denoted as ζ) is the roughness exponent of the interface and µ is the dynamic
exponent (sometimes denoted as z). The brackets 〈· · ·〉 denote average over disorder.

For the proposed model we identify three different regimes : A static regime for which K0 � K∗

(where the Heaviside function in (5) can be safely approximated by 0) ; A regularly moving interface for
large values of K0 (where the Heaviside function can be safely approximated by 1) ; And an intermediate
complex regime, where K0 ∼ K∗. In this last regime, a very important factor seems to be the stabilizing
terms (i.e. those terms of order h/L that were dropped out in the derivation) that will make sure that
the crack will stop after a while (as indeed seen in experiments).

Based on that picture, we hypothesize that a frozen dynamically rough interface is seen in experiments
[5]), rather than a rough phase determined by a static pinned interface. In other words, we stress the point
that the crack tends to stop due to its physical nature even without the presence of heterogeneities. This is
indeed the case in cantilever beam experiments [5], where the crack faces are increasingly opened in order
to induce crack front motion. As a result the front starts moving until it stops. The heterogeneities only
induce roughness and as we argue, a dynamical roughness, which is then frozen due to the irreversibility
of the fracture process.

In order to test this picture, we approximate this system by neglecting consistently all mechanisms
which deal with the slowing down of the interface, as well as the freezing of it. The assumption here is
that the specific aspect of fine-tuning the opening stress mode (for example by imposing a time-dependent
external loading) is exactly what the experiment does. Then we analyze the system at that critical point
whichever means were taken to get there. This involves neglecting the Heaviside function on the right-
hand side of Eq. (5). We suspect that this term does play a role in the final stages of freezing, namely
by imposing differential arrest along the interface (note again that the interface would stop anyway,
even without this term). This would tend to increase the roughness. Thus, we would consider the results
obtained below as a lower bound for the roughness, offering a quantitative physical explanation up to the
last steps of the freezing.
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Following the previous arguments, we approximate the noise term for the moving front, where h ' vt,
by η (z, h) ' η (z, vt) = η̂ (z, t), i.e. as a “thermal noise” [11]. Also, we do keep nonlinear terms, since we
claim (and will justify later) that they play an important role in roughening the interface. Obviously a
linear equation of the kind described above (i.e. taking into consideration only the linear term in KI(h))
would not yield any roughness, and actually even if the KPZ nonlinearities (i.e. h′2 terms) are kept, we
would also end up with a smooth surface, or at most logarithmically rough (this is a special case of the so
called Fractal KPZ equation studied previously in [19]). When keeping consistently second order terms,
the resulting equation of motion becomes

∂h

∂t
= K0

∞
∫

−∞

h′ (z′)

(z′ − z)

dz′

2π
+K0

∞
∫

−∞

dz′

2π

∞
∫

−∞

dz′′

2π

h′ (z′)h′ (z′′)

(z′ − z) (z′′ − z′)
−

3

8

(

4

3
K∗ − K0

)

h′2+(K0 − K∗)+η̂ (z, t) ,

(7)
with noise correlations described by

〈η̂ (z, t) η̂ (z′, t′)〉 = 2Dδ (z − z′) δ (t − t′) , (8)

where D is the variance of the noise. The constant term, (K0 − K∗), in Eq. (7) can be put aside by
transforming into a co-moving coordinate system. Moreover, by looking at the KPZ term (i.e. h′2) we can
estimate the region where this discussion is relevant. Roughly, when the coefficient of that term remains
negative (i.e. for K0 < 4

3K∗), we are still in the quasi-static regime since in that case a rough interface
would decrease the velocity, while for higher values of the applied stress (K0 > 4

3K∗) the system would
be in the regularly moving regime. This estimate is consistent with our assumption that the dynamics of
interest is not necessarily at K0 ' K∗, but in some range above it.

4 The Self Consistent Expansion

We now apply the self-consistent-expansion (SCE) method to this simplified equation of motion in
order to derive results for the scaling exponents [20]. This method was developed by Schwartz and
Edwards [21,22] and has been applied successfully to the Kardar Parisi-Zhang (KPZ) equation [23]. The
method gained much credit by being able to give sensible predictions for the KPZ scaling exponents in the
strong-coupling phase above one dimension where many renormalization group (RG) approaches failed.
Another point which is especially relevant for our purpose is that for a family of models with long-range
interactions (of the kind treated presently) SCE reproduced exact one-dimensional results while RG failed
to do so [24].

The SCE method is based on going over from the Fourier transform of the equation in Langevin form
to a Fokker-Planck form and on constructing a self-consistent expansion of the distribution of the field
concerned. We then consider the simplified version of the equation of motion in Fourier components

∂hq (t)

∂t
= −cqhq −

∑

`,m

Mq`mh`hm + η̂q (t) , (9)

where cq = K0

2 |q| and Mq`m = − K0

4
√

Lz
|q| |`| δq,`+m, Lz being the linear size of the front. Note that in

contrast to the KPZ problem Mq`m has the symmetries

Mq`m = M−q,`,m = Mq,−`,m = Mq,`,−m. (10)

Last, η̂q(t) is a noise term with zero average described by its variance

〈η̂q (t) η̂q′ (t′)〉 = 2Dδq,−q′δ (t − t′) . (11)

Rewriting this equation in a Fokker-Planck form we get

∂P

∂t
+

∑

q

∂

∂hq



D0
∂

∂h−q

+ cqhq +
∑

`,m

Mq`mh`hm



 P = 0 , (12)
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where P ({hq} , t) is the probability functional for having a height configuration {hq} at time t.
The expansion is formulated in terms of the steady-state structure factor φq = 〈h−qhq〉 (or two-point

function), and its corresponding steady-state decay rate that describes the rate of decay of a disturbance
of wave vector q in steady state, namely

ω−1
q =

∫ ∞
0

〈h−q(0)hq(t)〉 dt

〈h−qhq〉
. (13)

From the scaling form (6) it follows that for small q’s φq and ωq behave as power laws in q, namely
φq = A|q|−Γ and ωq = B|q|µ, where z is the dynamic exponent, and the exponent Γ is related to the
roughness exponent by α = (Γ − 1)/2.

The main idea of SCE is to write the Fokker-Planck equation ∂P/∂t = OP in the form ∂P/∂t =
[O0 + O1 + O2] P , where O0, O1 and O2 are zero, first and second order operators in some parameter.

The evolution operator O0 is chosen to have a simple form O0 = −
∑

q

∂
∂hq

(

Dq
∂

∂h−q
+ ωqhq

)

, where

Dq/ωq = φq . Note that φq and ωq are still unknown. Next, an equation for the two-point function is
obtained. The expansion has the form φq = φq + eq {φp, ωp}, where eq is a functional of all φ’s and ω’s.
This reflects the fact that the lowest order in the expansion is exactly the unknown φq . In the same way,
an expansion for ωq is given by ωq = ωq + dq {φp, ωp}. Now, the two-point function and the characteristic
frequency are determined by setting eq {φp, ωp} = 0 and dq {φp, ωp} = 0. To second order in the expansion,
we get the following two coupled integral equations

D0 −
K0

2
|q|φq + I1 (q) φq + I2 (q) = 0 , (14)

ωq −
K0

2
|q| + J (q) = 0 , (15)

with

I1 (q) =
K2

0

32π
|q|

∫

d` |`|
|`|(|q−`|+|q|)φq−`+|q−`|(|`|+|q|)φ`

ωq+ω`+ωq−`
, (16)

I2 (q) =
K2

0

32π
q2

∫

d` |`|
(|`|+|q−`|)φ`φq−`

ωq+ω`+ωq−`
, (17)

J (q) =
K2

0

32π
|q|

∫

d` |`|
|`|(|q−`|+|q|)φq−`+|q−`|(|`|+|q|)φ`

ω`+ωq−`
. (18)

It is interesting to mention here that Eq. (14) can be understood as emanating from the short time
balance of the original equation, while Eq. (15) comes from its long time balance [22].

These equations can be solved exactly in the asymptotic limit (i.e. for small q’s) to yield the required
scaling exponents governing the steady-state behavior and the time evolution. We will not get more into
technical details, but rather summarize our results. We found two possible phases : First, a flat phase
described by α = 0 and µ = 1, corresponding to the system in the moving regime. This phase is always
possible. Second, we see the possibility of having a rough phase with α = 1/2 and µ = 2, which is possible
only for some critical values of the forcing at slow velocities.

5 Summary and Discussion

Having in mind the roughness of a propagating crack front in heterogeneous materials we derived the
second order variation in the stress intensity factor of a tensile crack with a curved front propagating
in a brittle material. We pointed out that for linear stability analysis one has to take into account the
contributions coming from the large scales and so the complete resolution of a given problem must be
fully performed for that purpose. Then, we proposed an equation of motion of planar crack fronts in
heterogeneous media that contains both the irreversibility of the propagation of the crack front and
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nonlinear effects. We show that the proposed equation can be useful in studying the roughening of
propagating crack fronts. We do so by using the method of the self-consistent expansion. We found the
possibility of having a rough moving phase with α = 1/2 (and µ = 2) which is relevant for K0 ∼ K∗

due to destabilization of the nonlocal elasticity by the nonlinear term. This result is in agreement with
the roughness exponent measured in experimental systems [4,5]. Since in our analysis we neglected the
irreversibility of the fracture process (which becomes important during the last steps of freezing, and
so tends to further roughen the line), our analysis provides a lower bound for the experimental results
(recall that experimental results vary between 0.5–0.6). We hope that analysis of the full equation would
yield results which are even closer to the experimental measurements. On the other hand, an interesting
challenge to experiments would be determination of the dynamic exponent µ from direct measurements.
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